Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Strong compactness and a partition property


Author: Pierre Matet
Journal: Proc. Amer. Math. Soc. 134 (2006), 2147-2152
MSC (2000): Primary 03E02, 03E55
DOI: https://doi.org/10.1090/S0002-9939-05-08206-7
Published electronically: December 19, 2005
MathSciNet review: 2215786
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ \operatorname{Part}(\kappa,\lambda)$ holds for every $ \lambda\ge\kappa$, then $ \kappa$ is strongly compact.


References [Enhancements On Off] (What's this?)

  • 1. J. E. Baumgartner and A. D. Taylor, Saturation properties of ideals in generic extensions. I, Transactions of the American Mathematical Society 270 (1982), 557-574. MR 0645330 (83k:03040a)
  • 2. D. M. Carr, $ P_\kappa\lambda$-Generalizations of weak compactness, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 31 (1985), 393-401. MR 0808767 (87h:03087)
  • 3. C. A. DiPrisco and W. S. Zwicker, Flipping properties and supercompact cardinals, Fundamenta Mathematicae 109 (1980), 31-36. MR 0594323 (82c:03072)
  • 4. T. J. Jech, Some combinatorial problems concerning uncountable cardinals, Annals of Mathematical Logic 5 (1973), 165-198. MR 0325397 (48:3744)
  • 5. T. Jech and S. Shelah, A partition theorem for pairs of finite sets, Journal of the American Mathematical Society 4 (1991), 647-656. MR 1122043 (93a:03049)
  • 6. A. Kanamori, The Higher Infinite, Perspectives in Mathematical Logic, Springer, Berlin, 1994. MR 1321144 (96k:03125)
  • 7. J. P. Levinski, Filters and large cardinals, Annals of Pure and Applied Logic 72 (1995), 177-212.MR 1323905 (96g:03085)
  • 8. P. Matet, Covering for category and combinatorics on $ P_\kappa(\lambda)$, Journal of the Mathematical Society of Japan, to appear.
  • 9. P. Matet, Weak square bracket relations for $ P_\kappa(\lambda)$, preprint.
  • 10. P. Matet, $ \operatorname{Part}(\kappa,\lambda)$ and $ \operatorname{Part}^*(\kappa,\lambda)$, Centre de Recerca Matematica, to appear.
  • 11. P. Matet, C. Péan and S. Todorcevic, Prime ideals on $ P_\omega(\lambda)$ with the partition property, Archive for Mathematical Logic 41 (2002), 743-764. MR 1949335 (2003j:03056)
  • 12. M. Shioya, Partition properties of subsets of $ P_\kappa\lambda$, Fundamenta Mathematicae 161 (1999), 325-329. MR 1716019 (2000h:03087)
  • 13. A. D. Taylor, On saturated sets of ideals and Ulam's problem, Fundamenta Mathematicae 109 (1980), 37-53. MR 0594324 (82a:03045)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 03E02, 03E55

Retrieve articles in all journals with MSC (2000): 03E02, 03E55


Additional Information

Pierre Matet
Affiliation: CNRS, Laboratoire de Mathématiques, Université de Caen, BP 5186, 14032 Caen Cedex, France
Email: matet@math.unicaen.fr

DOI: https://doi.org/10.1090/S0002-9939-05-08206-7
Keywords: $P_\kappa(\lambda), {Part}(\kappa,\lambda)$, strongly compact cardinal.
Received by editor(s): June 22, 2004
Received by editor(s) in revised form: February 11, 2005
Published electronically: December 19, 2005
Communicated by: Carl G. Jockusch, Jr.
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society