Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On homeomorphisms and quasi-isometries of the real line


Author: Parameswaran Sankaran
Journal: Proc. Amer. Math. Soc. 134 (2006), 1875-1880
MSC (2000): Primary 20F65, 20F28; Secondary 20F67
DOI: https://doi.org/10.1090/S0002-9939-05-08348-6
Published electronically: December 19, 2005
MathSciNet review: 2215114
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the group of piecewise-linear homeomorphisms of $ \mathbb{R}$ having bounded slopes surjects onto the group $ QI(\mathbb{R})$ of all quasi-isometries of $ \mathbb{R}$. We prove that the following groups can be imbedded in $ QI(\mathbb{R})$: the group of compactly supported piecewise-linear homeomorphisms of $ \mathbb{R}$, the Richard Thompson group $ F$, and the free group of continuous rank.


References [Enhancements On Off] (What's this?)

  • 1. M.R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grund. Math. Wiss., 319, (1999), Springer-Verlag, Berlin. MR 1744486 (2000k:53038)
  • 2. M. Brin and C.C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79, (1985), 485-498. MR 0782231 (86h:57033)
  • 3. K.S. Brown and R. Geoghegan, An infinite dimensional torsion-free $ FP_\infty$ group, Invent. Math. 77, (1984), 367-381. MR 0752825 (85m:20073)
  • 4. J.W. Cannon, W.J. Floyd, and W.R. Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. 42, 215-256, (1996). MR 1426438 (98g:20058)
  • 5. J. Dydak, A simple proof that pointed connected FANR-spaces are regular fundamental retracts of ANR's. Bull. Polon. Acad. Sci. Ser. Sci. Math. Astron. Phys., 25, (1977), 55-62. MR 0442918 (56:1293)
  • 6. P. Freyd and A. Heller, Splitting homotopy idempotents-II, J. Pure Appl. Algebra, 89, (1993), 93-106. MR 1239554 (95h:55015)
  • 7. M. Gromov, Infinite groups as geometric objects, Proc. ICM, Warsaw, 1982-1983. MR 0804694 (87c:57033)
  • 8. J. Grabowski, Free subgroups of diffeomrphism groups, Fund. Math. 131, (1988), 103-121. MR 0974661 (90b:58031)
  • 9. M. Imbert, Sur l'isomorphisme du groupe de Richard Thompson avec le groupe de Ptolémée Geometric Galois actions, 2, 313-324, London Math. Soc. Lecture Note Ser., 243, Cambridge Univ. Press, Cambridge, 1997. MR 1653017 (99k:20078)
  • 10. R. McKenzie and R.J. Thompson, An elementary construction of unsovable word problems in group theory, Word problems W.W. Boone et al., (eds.), Studies in Logic and the Foundations of Mathematics, 71, 457-478, North-Holland, Amsterdam, 1973. MR 0396769 (53:629)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20F65, 20F28, 20F67

Retrieve articles in all journals with MSC (2000): 20F65, 20F28, 20F67


Additional Information

Parameswaran Sankaran
Affiliation: Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600 113, India
Email: sankaran@imsc.res.in

DOI: https://doi.org/10.1090/S0002-9939-05-08348-6
Keywords: PL-homeomorphisms, quasi-isometry, Thompson's group, free groups
Received by editor(s): October 4, 2004
Received by editor(s) in revised form: February 8, 2005
Published electronically: December 19, 2005
Communicated by: Alexander N. Dranishnikov
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society