Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Spectrum of bilateral shifts with operator-valued weights


Author: A. Bourhim
Journal: Proc. Amer. Math. Soc. 134 (2006), 2131-2137
MSC (2000): Primary 47B37; Secondary 47A10, 47A11
DOI: https://doi.org/10.1090/S0002-9939-06-08230-X
Published electronically: January 31, 2006
MathSciNet review: 2215784
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the spectrum of bilateral operator-weighted shifts.


References [Enhancements On Off] (What's this?)

  • 1. P. Aiena,
    Fredholm and local spectral theory, with applications to multipliers, Kluwer, Dordrecht, 2004. MR 2070395 (2005e:47001)
  • 2. A. Ben-Artzi and I. Gohberg,
    Dichotomy, discrete Bohl exponents, and spectrum of block weighted shifts, Integral equations and Operator Theory, 14 (1991) 613-677. MR 1118967 (93e:47033)
  • 3. A. Bourhim and C. E. Chidume,
    The single-valued extension property for bilateral operator weighted shifts, Proc. Amer. Math. Soc. 133 (2005), 485-491. MR 2093072
  • 4. A. Bourhim,
    Local spectra of bilateral operator weighted shifts, Rend. Circ. Mat. Palermo (2) Suppl. No. 73 (2004), 195-206. MR 2078176 (2005d:47054)
  • 5. D. Herrero,
    Spectral pictures of hyponormal bilateral operator weighted shifts, Proc. Amer. Math. Soc. 109 (1990) 753-763. MR 1014644 (90k:47050)
  • 6. J. X. Li, Y. Q. Ji and S. L. Sun,
    The essential spectrum and Banach reducibility of operator weighted shifts, Acta Math. Sinica, English Series, Vol. 17, 3 (2001) 413-424. MR 1852955 (2002g:47063)
  • 7. K. B. Laursen and M. M. Neumann,
    An introduction to local spectral theory, London Mathematical Society Monograph New Series 20 (2000). MR 1747914 (2001k:47002)
  • 8. M. Radjabalipour,
    Ranges of hyponormal operators, Illinois J. Math. 21 (1977) 70-75. MR 0448140 (56:6449)
  • 9. W. C. Ridge,
    Approximate point spectrum of a weighted shift, Trans. Amer. Math. Soc. 147 (1970) 349-356. MR 0254635 (40:7843)
  • 10. A. L. Shields,
    Weighted shift operators and analytic function theory, in Topics in Operator Theory, Mathematical Surveys, No. 13 (ed. C. Pearcy), pp. 49-128. American Mathematical Society, Providence, Rhode Island 1974. MR 0361899 (50:14341)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47B37, 47A10, 47A11

Retrieve articles in all journals with MSC (2000): 47B37, 47A10, 47A11


Additional Information

A. Bourhim
Affiliation: Département de Mathématiques et de Statistique, Université Laval, Québec, Québec, Canada G1K 7P4
Email: bourhim@mat.ulaval.ca

DOI: https://doi.org/10.1090/S0002-9939-06-08230-X
Keywords: Bilateral weighted shifts, spectrum, local spectrum
Received by editor(s): December 3, 2004
Received by editor(s) in revised form: February 23, 2005
Published electronically: January 31, 2006
Communicated by: Joseph A. Ball
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society