Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A hyperfinite inequality for free entropy dimension


Author: Kenley Jung
Journal: Proc. Amer. Math. Soc. 134 (2006), 2099-2108
MSC (2000): Primary 46L54; Secondary 28A78
DOI: https://doi.org/10.1090/S0002-9939-06-08237-2
Published electronically: January 6, 2006
MathSciNet review: 2215780
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ X, Y$, and $ Z$ are finite sets of selfadjoint elements in a tracial von Neumann algebra and $ X$ generates a hyperfinite von Neumann algebra, then $ \delta_0(X \cup Y \cup Z) \leq \delta_0(X \cup Y) + \delta_0(X \cup Z)- \delta_0(X).$


References [Enhancements On Off] (What's this?)

  • 1. Belinschi, S. and Bercovici, H. `A property of free entropy', Pacific J. Math. 211 (2003), no.1, 35-40. MR 2016588 (2004i:46097)
  • 2. Connes, A. and Shlyakhtenko, D. `$ L^2$-Homology for von Neumann algebras', preprint, 2003.
  • 3. Gaboriau, Damien, `Cout des relations d'equivalence et des groupes', Inventiones Mathematicae, 139 (2000), no.1, 41-98. MR 1728876 (2001f:28030)
  • 4. Ge, Liming and Shen, Junhao `On free entropy dimension of finite von Neumann algebras', Geometric and Functional Analysis, Vol. 12, (2002), 546-566. MR 1924371 (2003f:46109)
  • 5. Jung, Kenley `The free entropy dimension of hyperfinite von Neumann algebras', Transactions of the AMS 355 (2003), 5053-5089. MR 1997595 (2004f:46080)
  • 6. Jung, Kenley `A free entropy dimension lemma'. Pacific Journal of Mathematics, 211 (2003), 265-271. MR 2015736 (2004k:46115)
  • 7. Szarek, S. `Metric entropy of homogeneous spaces', Quantum Probability, (Gdansk, 1997), Banach Center Publications v. 43, Polish Academy of Science, Warsaw 1998, 395-410. MR 1649741 (2000c:53097)
  • 8. Voiculescu, D. `The analogues of entropy and of Fisher's information measure in free probability theory, II'. Inventiones Mathematicae 118, (1994), 411-440. MR 1296352 (96a:46117)
  • 9. Voiculescu, D. `The analogues of entropy and of Fisher's information measure in free probability theory III: The absence of Cartan subalgebras'. Geometric and Functional Analysis, Vol. 6, No.1 (1996), 172-199. MR 1371236 (96m:46119)
  • 10. Voiculescu, D. `A strengthened asymptotic freeness result for random matrices with applications to free entropy'. IMRN, 1 (1998), 41-64. MR 1601878 (2000d:46080)
  • 11. Voiculescu, D. `Free entropy', Bulletin of the London Mathematical Society, 34 (2002), no. 3, 257-332. MR 1887698 (2003c:46077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46L54, 28A78

Retrieve articles in all journals with MSC (2000): 46L54, 28A78


Additional Information

Kenley Jung
Affiliation: Department of Mathematics, University of California, Los Angeles, California 90024-3840
Email: kjung@math.ucla.edu

DOI: https://doi.org/10.1090/S0002-9939-06-08237-2
Received by editor(s): November 15, 2004
Received by editor(s) in revised form: February 17, 2005
Published electronically: January 6, 2006
Additional Notes: This research was supported by the NSF Graduate Fellowship Program
Dedicated: For H-town
Communicated by: David R. Larson
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society