Upper and lower bounds for the first Dirichlet eigenvalue of a triangle

Author:
Pedro Freitas

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2083-2089

MSC (2000):
Primary 35P15; Secondary 35J05

DOI:
https://doi.org/10.1090/S0002-9939-06-08339-0

Published electronically:
January 6, 2006

MathSciNet review:
2215778

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove some new upper and lower bounds for the first Dirichlet eigenvalue of a triangle in terms of the lengths of its sides.

**[AF]**P. Antunes and P. Freitas, New bounds for the principal Dirichlet eigenvalue of planar regions, preprint.**[BW]**R. Brooks and P. Waksman, The first eigenvalue of a scalene triangle, Proc. Amer. Math. Soc.**100**(1987), 175-182. MR**0883424 (88f:58147)****[CD]**P.-K. Chang and D. Deturck, On hearing the shape of a triangle, Proc. Amer. Math. Soc.**105**(1989), 1033-1038. MR**0953738 (89h:58194)****[Ga]**M. Gaudin, Vers le spectre du triangle?, J. Physique**48**(1987), 1633-1650. MR**0923667 (89e:58113)****[Go]**Thomas Gorin,*Generic spectral properties of right triangle billiards*, J. Phys. A**34**(2001), no. 40, 8281–8295. MR**1873184**, https://doi.org/10.1088/0305-4470/34/40/306**[M]**E. Makai,*On the principal frequency of a membrane and the torsional rigidity of a beam*, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 227–231. MR**0167004****[O]**Robert Osserman,*A note on Hayman’s theorem on the bass note of a drum*, Comment. Math. Helv.**52**(1977), no. 4, 545–555. MR**0459099**, https://doi.org/10.1007/BF02567388**[Po]**G. Pólya,*Two more inequalities between physical and geometrical quantities*, J. Indian Math. Soc. (N.S.)**24**(1960), 413–419 (1961). MR**0133059****[PoSz]**G. Pólya and G. Szegö,*Isoperimetric Inequalities in Mathematical Physics*, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N. J., 1951. MR**0043486****[Pr]**M. H. Protter, A lower bound for the fundamental frequency of a convex region, Proc. Amer. Math. Soc.**81**(1981), 65-70. MR**0589137 (82b:35113)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35P15,
35J05

Retrieve articles in all journals with MSC (2000): 35P15, 35J05

Additional Information

**Pedro Freitas**

Affiliation:
Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Address at time of publication:
Faculdade de Motricidade Humana and Mathematical Physics Group of the University of Lisbon, Complexo Interdisciplinar, Av. Prof. Gama Pinto 2, P-1649-003 Lisboa, Portugal

Email:
pfreitas@math.ist.utl.pt, freitas@cii.fc.ul.pt

DOI:
https://doi.org/10.1090/S0002-9939-06-08339-0

Received by editor(s):
September 9, 2004

Received by editor(s) in revised form:
February 16, 2005

Published electronically:
January 6, 2006

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.