Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On maximal operators on $ k$-spheres in $ \mathbb{Z}^{n}$


Authors: Muharem Avdispahic and Lejla Smajlovic
Journal: Proc. Amer. Math. Soc. 134 (2006), 2125-2130
MSC (2000): Primary 42B25, 11P55
DOI: https://doi.org/10.1090/S0002-9939-06-08458-9
Published electronically: January 17, 2006
MathSciNet review: 2215783
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A. Magyar's result on $ L^{p}$-bounds for a family of operators on $ k$-spheres ($ k\geq 3$) in $ \mathbb{Z}^{n}$ is improved to match the corresponding theorem for $ 2$-spheres.


References [Enhancements On Off] (What's this?)

  • 1. A. H. Hardy and J. E. Littlewood, A new solution of Waring's problem, Quart. J. Math. 48 (1919), 272-293.
  • 2. A. H. Hardy and S. Ramanujan, Asymptotic formula in combinatory analysis, Proc. London Math. Soc. Ser. 2, 17 (1918), 75-115.
  • 3. A. A. Karatsuba, Vinogradova otsenki, Matematicheskaya entsiklopediya, Vol. 1, Moscow, 1977.
  • 4. A. Magyar, $ L^{p}$-bounds for spherical maximal operators on $ \mathbb{Z}^{n}$, Rev. Mat. Iberoamericana 13 (1997), 307-317. MR 1617657 (99d:42031)
  • 5. A. Magyar, E. M. Stein and S. Wainger, Discrete analogues in harmonic analysis: Spherical averages, Ann. Math. 155 (2002), 189-208. MR 1888798 (2003f:42028)
  • 6. M. B. Nathanson, Additive number theory. The classical basis, GTM 164, Springer, 1996. MR 1395371 (97e:11004)
  • 7. S. B. Stechkin, Estimate of a complete rational trigonometric sum, Proc. Steklov Inst. Math. 143 (1980), 201-220 (=Tr. Mat. Inst. Steklova 143 (1977), 188-207). MR 0480376 (58:543)
  • 8. E. M. Stein, Maximal functions: Spherical means, Proc. Nat. Acad. Sci. USA 73 (1976), 2174-2175.
  • 9. I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, Moscow, 1980. MR 0603100 (82b:10047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42B25, 11P55

Retrieve articles in all journals with MSC (2000): 42B25, 11P55


Additional Information

Muharem Avdispahic
Affiliation: Department of Mathematics, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina
Email: mavdispa@pmf.unsa.ba

Lejla Smajlovic
Affiliation: Department of Mathematics, University of Sarajevo, Zmaja od Bosne 35, 71000 Sarajevo, Bosnia and Herzegovina
Email: lejlas@pmf.unsa.ba

DOI: https://doi.org/10.1090/S0002-9939-06-08458-9
Keywords: Maximal functions, Vinogradov's method
Received by editor(s): February 21, 2005
Published electronically: January 17, 2006
Communicated by: Michael T. Lacey
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society