A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

Phil Hanlon, Hodge structures on posets 1857
Esther Beneish, Failure of Krull-Schmidt for invertible lattices over a discrete valuation ring .. 1869
Parameswaran Sankaran, On homeomorphisms and quasi-isometries of the real line ... 1875
David Terhune, Evaluations of a class of double L-values 1881
Jan Štovíček, All n-cotilting modules are pure-injective 1891

B. ANALYSIS

Kin-Wai Tsang, The groupoid algebra of an eigenvalue pattern 1899
Joachim Zacharias, On the invariant translation approximation property for discrete groups .. 1909
Hideki Miyachi, On invariant distances on asymptotic Teichmüller spaces 1917
Dan Coman, Entire pluricomplex Green functions and Lelong numbers of projective currents ... 1927
Jean-Paul Penot and Constantin Zălinescu, On the convergence of maximal monotone operators ... 1937
Matthew M. Jones, Compact composition operators not in the Schatten classes 1947
L. Bernal-González, Hypercyclic subspaces in Fréchet spaces 1955
László Székelyhidi, Jr., On the local structure of rank-one convex hulls 1963
Bin Han, On a conjecture about MRA Riesz wavelet bases 1973
Jan Andres and Tomáš Fürst, An example of application of the Nielsen theory to integro-differential equations 1985
Gabriel Picioroaga, The inner amenability of the generalized Thompson group 1995
Tyrone Crisp and Daniel Gow, Contractible subgraphs and Morita equivalence of graph C^*-algebras ... 2003
L. Escauriaza, Unique continuation for the system of elasticity in the plane 2015
Elmouloudi Ed-Dari and Mohamed Amine Khamsi, The numerical index of the L_p space .. 2027
Frédéric Jaëck and Stephen C. Power, Hyper-reflexivity of free semigroupoid algebras ... 2037
K. Kopotun, D. Leviatan, and A. V. Prymak, Nearly monotone spline approximation in L_p ... 2049
Chunjie Wang, On Korenblum’s maximum principle 2061
Alex Kumjian and Jean Renault, KMS states on C^*-algebras associated to expansive maps .. 2073
T. S. S. R. K. Rao, Extending into isometries of $\mathcal{K}(X,Y)$ 2078
Pedro Freitas, Upper and lower bounds for the first Dirichlet eigenvalue of a triangle ... 2083
Gaven Martin, Volker Mayer, and Kirsi Peltonen, The generalized Lichnerowicz problem: Uniformly quasiregular mappings and space forms 2091
Kenley Jung, A hyperfinite inequality for free entropy dimension 2099
Antonio Aizpuru and Francisco Javier García-Pacheco, L^2-summand vectors in Banach spaces ... 2109
Mark L. Agranovsky and E. K. Narayanan, Isotopic families of contact manifolds for elliptic PDE ... 2117
Muharem Avdispahić and Lejla Smajlović, On maximal operators on k-spheres in \mathbb{Z}^n ... 2125
A. Bourhim, Spectrum of bilateral shifts with operator-valued weights 2131

D. GEOMETRY

G. Brock Williams, A circle packing measurable Riemann mapping theorem ... 2139

E. LOGIC AND FOUNDATIONS

Pierre Matet, Strong compactness and a partition property 2147

F. STATISTICS AND PROBABILITY

Qi-Man Shao and Zhong-Gen Su, The Berry-Esseen bound for character ratios 2153

G. TOPOLOGY

Warren B. Moors, The product of a Baire space with a hereditarily Baire metric space is Baire .. 2161
Manuel A. Morón and Francisco R. Ruiz del Portal, A note about the shape of attractors of discrete semidynamical systems 2165
Editorial Information

To be published in the *Proceedings*, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. *Proceedings* Editors solicit and encourage publication of worthy papers of length not exceeding 10 published pages. Published pages are the same size as those generated in the style files provided for \texttt{AMS-\LaTeX} or \texttt{AMS-\TeX}.

Information on the backlog for this journal can be found on the AMS website starting from \url{http://www.ams.org/proc}.

In an effort to make articles available as quickly as possible, articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue.

A Consent to Publish and Copyright Agreement is required before a paper will be published in this journal. After a paper is accepted for publication, the Providence office will send out a Consent to Publish and Copyright Agreement to all authors of the paper. By submitting a paper to this journal, authors certify that the results have not been submitted to nor are they under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors

Initial submission. Two copies of the paper should be sent directly to the appropriate Editor and the author should keep a copy.

IF an editor is agreeable, an electronic manuscript prepared in \LaTeX{} or \TeX{} may be submitted by pointing to an appropriate URL on a preprint or e-print server.

The first page of an article must consist of a *descriptive title*, followed by an *abstract* that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The *descriptive title* should be short, but informative; useless or vague phrases such as “some remarks about” or “concerning” should be avoided. The *abstract* should be at least one complete sentence, and at most 150 words. Included with the footnotes to the paper should be the 2000 *Mathematics Subject Classification* representing the primary and secondary subjects of the article. The classifications are accessible from \url{www.ams.org/msc/}. The list of classifications is also available in print starting with the 1999 annual index of *Mathematical Reviews*. The Mathematics Subject Classification footnote may be followed by a list of *key words and phrases* describing the subject matter of the article and taken from it. Journal abbreviations used in bibliographies are listed in the latest *Mathematical Reviews* annual index. The series abbreviations are also accessible from \url{www.ams.org/publications/}. To help in preparing and verifying references, the AMS offers MR Lookup, a Reference Tool for Linking, at \url{www.ams.org/mrlookup/}. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Electronically prepared manuscripts. The AMS encourages electronically prepared manuscripts, with a strong preference for \texttt{AMS-\LaTeX}. To this end, the Society has prepared \texttt{AMS-\LaTeX} author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, the *AMS Author Handbook*, samples, and a style file that generates the particular design specifications of that publication series. Articles properly prepared using the \texttt{AMS-\LaTeX} style file and the \texttt{\label} and \texttt{\ref} commands automatically enable extensive intra-document linking to the bibliography and other elements of the article for searching electronically on the Web. Because linking must often be added manually to electronically prepared manuscripts in other forms of \TeX{}, using \texttt{AMS-\LaTeX} also reduces the amount of technical intervention once the files are received by the AMS. This results in fewer errors in processing and saves the author proofreading time. \texttt{AMS-\LaTeX} papers also move more efficiently through the production stream, helping to minimize publishing costs.
AMS-L\TeX is the highly preferred format of \TeX, but author packages are also available in AMS-\TeX. Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Manuscripts prepared electronically in \LaTeX or plain \TeX are normally not acceptable due to the high amount of technical time required to ensure that the file will run properly through the AMS in-house production system. \LaTeX users will find that AMS-L\TeX is the same as \LaTeX with additional commands to simplify the typesetting of mathematics, and users of plain \TeX should have the foundation for learning AMS-L\TeX.

Authors may retrieve an author package from the AMS website starting from \url{www.ams.org/tex/} or via FTP to \url{ftp.ams.org} (login as anonymous, enter username as password, and type cd pub/author-info). The AMS Author Handbook and the Instruction Manual are available in PDF format following the author packages link from \url{www.ams.org/tex/}. The author package can also be obtained free of charge by sending email to \url{tech-support@ams.org} (Internet) or from the Publication Division, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When requesting an author package, please specify AMS-L\TeX or AMS-\TeX and the publication in which your paper will appear. Please be sure to include your complete email address.

At the time of submission, authors should indicate if the paper has been prepared using AMS-L\TeX or AMS-\TeX and provide the Editor with a paper manuscript that matches the electronic manuscript. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper manuscript to the Editor, who will forward a copy to the Providence office. Editors will require authors to send their electronically prepared manuscripts to the Providence office in a timely fashion. Electronically prepared manuscripts can be submitted via the web at \url{www.ams.org/submit-book-journal/}, sent via email to \url{pub-submit@ams.org} (Internet), or sent on diskette to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. When sending a manuscript electronically via e-mail or diskette, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to send files are included in the author package.

Electronic graphics. Comprehensive instructions on preparing graphics are available starting from \url{www.ams.org/jourhtml/authors.html}. A few of the major requirements are given here.

Submit files for graphics as EPS (Encapsulated PostScript) files. This includes graphics originated via a graphics application as well as scanned photographs or other computer-generated images. If this is not possible, TIFF files are acceptable as long as they can be opened in Adobe Photoshop or Illustrator. No matter what method was used to produce the graphic, it is necessary to provide a paper copy to the AMS.

Authors using graphics packages for the creation of electronic art should also avoid the use of any lines thinner than 0.5 points in width. Many graphics packages allow the user to specify a "hairline" for a very thin line. Hairlines often look acceptable when proofed on a typical laser printer. However, when produced on a high-resolution laser imagesetter, hairlines become nearly invisible and will be lost entirely in the final printing process.

Screens should be set to values between 15% and 85%. Screens which fall outside of this range are too light or too dark to print correctly. Variations of screens within a graphic should be no less than 10%.

AMS policy on making changes to articles after posting. Articles are posted to the AMS website individually after proof is returned from authors and before appearing in an issue. To preserve the integrity of electronically published articles, once an article is individually posted to the AMS website but not yet in an issue, changes cannot be made in place in the paper. However, an "Added after posting" section may be added to the paper right before the References when there is a critical error in the content of the paper.
The “Added after posting” section gives the author an opportunity to correct this type of critical error before the article is put into an issue for printing and before it is then reposted with the issue. The “Added after posting” section remains a permanent part of the paper. The AMS does not keep author-related information, such as affiliation, current address, and email address, up to date after a paper is initially posted.

Once the article is assigned to an issue, even if the issue has not yet been posted to the AMS website, corrections may be made to the paper by submitting a traditional errata article to the Editor. The errata article will appear in a future print issue and will link back and forth on the web to the original article online.

Secure manuscript tracking on the Web and via email. Authors can track their manuscripts through the AMS journal production process using the personal AMS ID and Article ID printed in the upper right-hand corner of the Consent to Publish form sent to each author who publishes in AMS journals. Access to the tracking system is available from www.ams.org/mstrack/ or via email sent to mstrack-query@ams.org. To access by email, on the subject line of the message simply enter the AMS ID and Article ID. To track more than one manuscript by email, choose one of the Article IDs and enter the AMS ID and the Article ID followed by the word *all* on the subject line. An explanation of each production step is provided on the web through links from the manuscript tracking screen. Questions can be sent to proc-query@ams.org.

TeX files available. Beginning with the January 1992 issue of the Bulletin and the January 1996 issues of Transactions, Proceedings, Mathematics of Computation, and the Journal of the AMS, TeX files can be downloaded from the AMS website, starting from www.ams.org/journals/. Authors without Web access may request their files at the address given below after the article has been published. For Bulletin papers published in 1987 through 1991 and for Transactions, Proceedings, Mathematics of Computation, and the Journal of the AMS papers published in 1987 through 1995, TeX files are available upon request for authors without Web access by sending email to file-request@ams.org or by contacting the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The TeX file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet email, please include the email address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. **Note:** Because TeX production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, TeX files cannot be guaranteed to run through the author’s version of TeX without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author’s TeX environment.

Inquiries. Any inquiries concerning a paper that has been accepted for publication that cannot be answered via the manuscript tracking system mentioned above should be sent to proc-query@ams.org or directly to the Electronic Prepress Department, American Mathematical Society, 201 Charles Street, Providence, RI 02904-2294 USA.
Editors

Authors are requested to send papers directly to the appropriate Editor (the one whose area of responsibility and expertise, as described below, most closely approximates the subject field of the manuscript). Only when in doubt about an appropriate Editor, should manuscripts be sent to the Coordinating Editor responsible for the area in mathematics most closely connected to the paper. If in doubt about the area, send the manuscript to the Managing Editor, to whom all other communication about the journal should also be addressed. (All addresses should include the line “Department of Mathematics”, unless another department is indicated.)

Managing Editor: Ronald A. Fintushel, Michigan State University, East Lansing, MI 48824-1027 USA; e-mail: ronfint@math.msu.edu

1. ODE, PDE, GLOBAL ANALYSIS, AND DYNAMICAL SYSTEMS
 Coordinating Editor: Chuu-Lian Terng, University of California, Irvine, CA 92697-3875 USA; e-mail: cterng@math.uci.edu

 Dynamical systems and ergodic theory, Jane M. Hawkins, CB #3250, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA; e-mail: jmh@math.unc.edu

 Global analysis, Mikhail Shubin, Northeastern University, Boston, MA 02115 USA; e-mail: shubin@neu.edu

 Ordinary differential equations and special functions, Carmen C. Chicone, University of Missouri, Columbia, MO 65211-0001 USA; e-mail: carmen@chicone.math.missouri.edu

 Partial differential equations, David S. Tartakoff, University of Illinois at Chicago, Chicago, IL 60607 USA; e-mail: dst@uic.edu

2. LIE GROUPS, TOPOLOGY, AND GEOMETRY
 Coordinating Editor: Jon G. Wolfson, Michigan State University, East Lansing, MI 48824-1027 USA; e-mail: wolfson@math.msu.edu

 Algebraic topology, Paul Goerss, Northwestern University, Evanston, IL 60208-2730 USA; e-mail: pgoerss@math.northwestern.edu

 Differential geometry (Riemannian geometry, complex geometry, and symplectic geometry), Jon G. Wolfson

 Geometric analysis (geometric PDE, minimal surfaces, and harmonic maps), Richard A. Wentworth, Johns Hopkins University, Baltimore, MD 21218 USA; e-mail: wentworth@jhu.edu

 Geometric topology, Alexander N. Dranishnikov, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105 USA; e-mail: dranish@math.ufl.edu

 Low dimensional topology, gauge theory, 4-manifolds, Daniel Ruberman, Brandeis University, Waltham, MA 02254-9110 USA; e-mail: ruberman@brandeis.edu

3. ANALYSIS AND OPERATOR THEORY
 Coordinating Editor: Andreas Seeger, University of Wisconsin, Madison, WI 53706 USA; e-mail: seeger@math.wisc.edu

 Banach spaces and linear functional analysis, N. Tomczak-Jaegermann, University of Alberta, Edmonton, AB, Canada T6G 2G1; e-mail: ntonczak@math.ualberta.ca; nicole.tomczak@ualberta.ca

 Geometric measure theory and classical real analysis, David Preiss, University College London, Gower Street, London WC1E 6BT, United Kingdom; e-mail: dp@math.ucl.ac.uk

 Harmonic analysis, Michael T. Lacey, School of Mathematics, Georgia Institute of Technology, 686 Cherry Street NW, Atlanta, GA 30332-4301 USA; e-mail: lacey@math.gatech.edu
Linear and nonlinear functional analysis, Jonathan M. Borwein, Faculty of Computer Science, Dalhousie University, 6050 University Avenue, Halifax, Nova Scotia B3H 1W5 Canada; e-mail: jborwein@cs.dal.ca

One complex variable and potential theory, Juha M. Heinonen, University of Michigan, Ann Arbor, MI 48109-1109 USA; e-mail: PAMS1@umich.edu

Operator theory, Joseph A. Ball, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 USA; e-mail: ball@math.vt.edu

Several complex variables, Mei-Chi Shaw, University of Notre Dame, Notre Dame, IN 46556-0398 USA; e-mail: mei-chi.shaw.1@nd.edu

4. ALGEBRA, NUMBER THEORY, COMBINATORICS, AND LOGIC
Coordinating Editor: Martin Lorenz, Temple University, Philadelphia, PA 19122-6094 USA; e-mail: lorenz@temple.edu

Algebraic geometry, Ted Chinburg, University of Pennsylvania, Philadelphia, PA 19104-6395 USA; e-mail: ted@math.upenn.edu

Automorphic forms, number theory, and applications of number theory, Wen-Ching Winnie Li, Pennsylvania State University, University Park, PA 16802-6401 USA; e-mail: wli@math.psu.edu

Combinatorics, Jim Haglund, Ohio State University, 231 W. 18th Avenue, Columbus, OH 43210 USA; e-mail: jhaglund@math.ohio-state.edu

Commutative algebra, Bernd Ulrich, Purdue University, West Lafayette, IN 47907-1395 USA; e-mail: ulrich@math.purdue.edu

Group theory, Jonathan I. Hall, Michigan State University, East Lansing, MI 48824-1027 USA; e-mail: jhall@math.msu.edu

Lie algebras, Dan M. Barbasch, Cornell University, Malott Hall, Ithaca, NY 14853-4201 USA; e-mail: barbasch@math.cornell.edu

Logic and foundations, Julia Knight, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556-4618 USA; e-mail: knight.1@nd.edu

Noncommutative algebra, Birge Huisgen-Zimmerman, University of California, Santa Barbara, Santa Barbara, CA 93106-3080 USA; e-mail: bhz.pams@math.ucsb.edu

Number theory, Ken Ono, University of Wisconsin, Madison, WI 53706 USA; e-mail: ono@math.wisc.edu

5. APPLIED MATHEMATICS, PROBABILITY, AND STATISTICS
Coordinating Editor: Mark J. Ablowitz, Department of Applied Mathematics, Campus Box 526, University of Colorado, Boulder, CO 80309-0526 USA; e-mail: markjab@newton.colorado.edu

Applied probability and statistics, Edward C. Waymire, Oregon State University, Corvallis, OR 97331-4605 USA; e-mail: waymire@math.orst.edu

Differential equations, Michael I. Weinstein, Department of Applied Physics and Applied Mathematics, Columbia University, 200 S.W. Mudd MC 4701, New York, NY 10027 USA; e-mail: miw2103@columbia.edu

Partial differential equations and dynamical systems, Walter Craig, Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, L8S 4K1 Canada; e-mail: craig@math.mcmaster.ca

Probability, Richard C. Bradley, Indiana University, Bloomington, IN 47405-4301 USA; e-mail: bradleyr@indiana.edu
(Continued from back cover)

Gaven Martin, Volker Mayer, and Kirsi Peltonen, The generalized Lichnerowicz problem: Uniformly quasiregular mappings and space forms 2091

Kenley Jung, A hyperfinite inequality for free entropy dimension 2099

Antonio Aizpuru and Francisco Javier García-Pacheco, L^2-summand vectors in Banach spaces 2109

Mark L. Agranovsky and E. K. Narayanan, Isotopic families of contact manifolds for elliptic PDE 2117

Muharem Avdispahić and Lejla Smajlović, On maximal operators on k-spheres in \mathbb{Z}^n 2125

A. Bourhim, Spectrum of bilateral shifts with operator-valued weights 2131

D. GEOMETRY

G. Brock Williams, A circle packing measurable Riemann mapping theorem 2139

E. LOGIC AND FOUNDATIONS

Pierre Matet, Strong compactness and a partition property 2147

F. STATISTICS AND PROBABILITY

Qi-Man Shao and Zhong-Gen Su, The Berry-Esseen bound for character ratios 2153

G. TOPOLOGY

Warren B. Moors, The product of a Baire space with a hereditarily Baire metric space is Baire 2161

Manuel A. Morón and Francisco R. Ruiz del Portal, A note about the shape of attractors of discrete semidynamical systems 2165
A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

Phil Hanlon, Hodge structures on posets ... 1857
Esther Beneish, Failure of Krull-Schmidt for invertible lattices over a discrete valuation ring .. 1869
Parameswaran Sankaran, On homeomorphisms and quasi-isometries of the real line ... 1875
David Terhune, Evaluations of a class of double \(L\)-values 1881
Jan Šťovíček, All \(n\)-cotilting modules are pure-injective 1891

B. ANALYSIS

Kin-Wai Tsang, The groupoid algebra of an eigenvalue pattern 1899
Joachim Zacharias, On the invariant translation approximation property for discrete groups ... 1909
Hideki Miyachi, On invariant distances on asymptotic Teichmüller spaces 1917
Dan Coman, Entire pluricomplex Green functions and Lelong numbers of projective currents .. 1927
Jean-Paul Penot and Constantin Zălinescu, On the convergence of maximal monotone operators .. 1937
Matthew M. Jones, Compact composition operators not in the Schatten classes ... 1947
L. Bernal-González, Hypercyclic subspaces in Fréchet spaces 1955
László Székelyhidi, Jr., On the local structure of rank-one convex hulls 1963
Bin Han, On a conjecture about MRA Riesz wavelet bases 1973
Jan Andres and Tomáš Fürst, An example of application of the Nielsen theory to integro-differential equations 1985
Gabriel Picioroaga, The inner amenability of the generalized Thompson group .. 1995
Tyrone Crisp and Daniel Gow, Contractible subgraphs and Morita equivalence of graph \(C^*\)-algebras 2003
L. Escauriaza, Unique continuation for the system of elasticity in the plane 2015
Elmoulooudi Ed-Dari and Mohamed Amine Khamsi, The numerical index of the \(L_p\) space ... 2019
Frédéric Jaëck and Stephen C. Power, Hyper-reflexivity of free semigroupoid algebras .. 2027
K. Kopotun, D. Leviatan, and A. V. Prymak, Nearly monotone spline approximation in \(L_p\) ... 2037
David B. Massey, \(L\)\(\ell\) modules and traces .. 2049
Chunjie Wang, On Korenblum’s maximum principle 2061
Alex Kumjian and Jean Renault, KMS states on \(C^*\)-algebras associated to expansive maps .. 2067

(Continued on inside back cover)