SIMPLE REAL RANK ZERO ALGEBRAS
WITH LOCALLY HAUSDORFF SPECTRUM

PING WONG NG

(Communicated by David R. Larson)

Abstract. Let \mathcal{A} be a unital, simple, separable C^*-algebra with real rank zero, stable rank one, and weakly unperforated ordered K_0 group. Suppose, also, that \mathcal{A} can be locally approximated by type I algebras with Hausdorff spectrum and bounded irreducible representations (the bound being dependent on the local approximating algebra). Then \mathcal{A} is tracially approximately finite dimensional (i.e., \mathcal{A} has tracial rank zero).

Hence, \mathcal{A} is an AH-algebra with bounded dimension growth and is determined by K-theoretic invariants.

The above result also gives the first proof for the locally AH case.

1. Introduction

In the K-theoretic classification program for simple unital separable stably finite nuclear C^*-algebras, a great deal of progress has been made for those algebras which have stable rank one, real rank zero, and weak unperforation in the ordered K_0-group (see, for example, [7], [13], [4], [11] and the last paragraph of [10]). One of the fundamental results in this direction is the work in [7], where Elliott and Gong classified (using K-theoretic invariants) all simple unital AH-algebras with bounded dimension growth and real rank zero.

We note that the class of algebras in [7] exhausts the current invariant for simple unital stably finite real rank zero nuclear C^*-algebras. Much work to date has been done to give classification results, for simple, nuclear, stably finite, real rank zero algebras, that do not assume that the C^*-algebras involved are AH-algebras (see, for example, [13] and the references therein).

Definition 1.1. Let \mathcal{A} be a simple unital C^*-algebra. Then \mathcal{A} is said to be tracially approximately finite dimensional (abbreviated by “TAF”) if for every $\epsilon > 0$, for every finite subset \mathcal{F} of \mathcal{A} and for every strictly positive element $a \in \mathcal{A}$, there is a projection p which is Murray-von Neumann equivalent to a subprojection in the hereditary subalgebra generated by a and there exists a finite dimensional C^*-subalgebra \mathcal{B} of \mathcal{A} such that: (a) $1_\mathcal{A} - p = 1_\mathcal{B}$ where $1_\mathcal{B}$ is the unit of \mathcal{B}, (b) $\|xp - px\| < \epsilon$ for every $x \in \mathcal{F}$, and (c) $(1_\mathcal{A} - p)x(1_\mathcal{A} - p)$ is within ϵ of an element of \mathcal{B}, for every $x \in \mathcal{F}$.

The term “tracial rank zero” is often used in place of “tracially approximately finite dimensional” (see, for instance, [12] and [13]). Hence, by definition, a simple,
unital C^*-algebra is TAF if and only if it has tracial rank zero. (Indeed, Lin has a notion of *tracial rank*, which takes on values other than zero. For example, all nonreal rank zero, simple, unital AH-algebras, with bounded dimension growth, have tracial rank one; see [12].)

Lin has shown that the class of simple unital separable nuclear TAF algebras which satisfy the universal coefficient theorem is exactly the class of [7] (see [13]).

Definition 1.2. Let A be a C^*-algebra. (a) Then A is said to be locally type I if for every $\epsilon > 0$, for every finite subset \mathcal{F} of A, there is a separable type I C^*-subalgebra B of A such that every element of \mathcal{F} is within ϵ of an element of B. (b) If in (a), every (local approximating) type I C^*-algebra B has Hausdorff spectrum and there exists an integer L (dependent on B) such that every irreducible representation of B has dimension less than L, then A is said to have locally Hausdorff spectrum. (c) If in (a), every (locally approximating) type I C^*-algebra has the form $\bigoplus_{i=1}^N \pi_i \mathcal{M}_{n_i}(C(X_i))\pi_i$, where each X_i is a compact metric space and each π_i is a projection in $\mathcal{M}_{n_i}(C(X_i))$, then A is said to be locally AH.

We note that Dadarlat and Eilers have given an example of a (nonsimple) separable, unital, locally AH C^*-algebra which has real rank zero and stable rank one, but is not an AH-algebra (see [3]).

We also note that in [2], Dadarlat has shown that if A is a separable nuclear C^*-algebra which can be locally approximated by C^*-algebras which satisfy the universal coefficient theorem, then A also satisfies the universal coefficient theorem. Hence, every locally type I C^*-algebra satisfies the universal coefficient theorem.

In [15], Lin proved the following very interesting result (there are several proofs in the literature; other proofs can be found in [1, Corollary 7.11], [14] and [17, Theorem 5.16]):

Theorem 1.3. Let A be a unital separable simple locally type I C^*-algebra with real rank zero, stable rank one, weak unperforation in the K_0-group. Suppose also that the tracial simplex has countably many extreme points. Then A is TAF. By a theorem of Lin, this implies that A is an AH-algebra with bounded dimension growth and is determined by K-theoretic invariants.

We note that Lin’s result requires a restriction on the tracial simplex of A (countably many extreme points). There have also been other interesting results in the literature which require this restriction on the tracial simplex (see, for example [1], the last paragraph of [10, 14, 15 and 17]).

In this paper, we remove the unique trace condition in Lin’s result provided that the (local) type I algebras have Hausdorff spectrum and bounded irreducible representations.

Definition 1.4. \mathcal{LCH}^+ is the class of simple unital separable C^*-algebras with real rank zero, stable rank one, weak unperforation in the ordered K_0-group, and having locally Hausdorff spectrum.

Theorem 1.5. Let A be a C^*-algebra in \mathcal{LCH}^+. Then A is TAF. Hence, by a theorem of Lin, A is an AH-algebra with bounded dimension growth and is determined by K-theoretic invariants.

Our result gives the first proof that a simple unital separable locally AH C^*-algebra with real rank zero, stable rank one, weak unperforation in the K_0 group is TAF, without any restriction on the tracial simplex.
A modification of our argument gives a short alternative proof of the following result of Lin (which also follows from our result).

Theorem 1.6 (see [16]). Let \(\mathcal{A} \) be a simple unital AH-algebra which has stable rank one, real rank zero and weakly unperforated \(K_0 \) group. Then \(\mathcal{A} \) is TAF.

Note that in the hypothesis of the above result, it is not assumed that \(\mathcal{A} \) has bounded dimension growth. Also, Lin’s argument does not generalize to the locally AH case.

In what follows, if \(\mathcal{A} \) is a unital \(C^* \)-algebra, then \(T(\mathcal{A}) \) is the simplex of unital traces on \(\mathcal{A} \).

2. **Main result**

Proof of Theorem 1.6. Let \(\{G_m^{(1)}\}_{m=1}^\infty \) be an increasing sequence of finite subsets of \(\mathcal{A} \) such that \(\mathcal{A} = \bigcup_{m=1}^\infty \overline{G_m^{(1)}} \). Let \(f \) be the function on the unit interval \([0, 1]\) given by \(f(t) = 0 \) for \(t < 1/2 \) and \(f(t) = 1 \) for \(t \geq 1/2 \). For each \(m \), let \(G_m^{(2)} \) be the (finite) set of elements of \(\mathcal{A} \) given by \(G_m^{(2)} = \{ f(\|a\|)/\|a\|) : a \neq 0, a \in G_m^{(1)}, f \) is continuous on the spectrum of \(|a|/\|a\| \} \) (here, given \(a \in \mathcal{A} \), \(|a| \) is the absolute value of \(a \) and \(\|a\| \) is the norm of \(a \)). Note that \(\bigcup_{m=1}^\infty G_m^{(2)} \) is dense in the set of projections of \(\mathcal{A} \). Now for each \(m \), let \(G_m = G_m^{(1)} \cup G_m^{(2)} \). Since \(\mathcal{A} \) is in \(\mathcal{LCH}^+ \), let \(\{A_m\}_{m=1}^\infty \) be a sequence of unital separable subalgebras of \(\mathcal{A} \), with Hausdorff spectrum and bounded irreducible representations, such that for each \(m \), \(a \) is within a distance \(1/2m \) of an element, say \(\phi_m(a) \), of \(A_m \) for every \(a \in G_m \). If \(a \) is a projection in \(G_m^{(2)} \), we further require that \(\phi_m(a) \) be a projection. Now, for each \(m \), \(A_m \) need not be a continuous trace \(C^* \)-algebra, but by [19] Theorem 4, \(A_m \) is “continuous trace” with respect to the normalized trace; that is, for each \(a \in A_m \), the map \(\overline{A_m} \rightarrow \mathbb{R} \) given by \(\pi \mapsto tr(\pi(a)) \) is continuous (where \(tr \) is the unital, normalized trace on the image of \(\pi \), and \(\overline{A_m} \) is the spectrum space of irreducible representations of \(A_m \)). But for each \(m \), for each \(p \in G_m^{(2)} \), the map \(\pi \mapsto tr(\pi(\phi_m(p))) \) can take on only finitely many (rational) values. Hence, \(\overline{A_m} \) is the disjoint union of finitely many clopen sets such that for each \(p \in G_m^{(2)} \), the map \(\pi \mapsto tr(\pi(\phi_m(p))) \) has constant value on each clopen set. Hence, for each \(m \), \(A_m \) can be realized as a finite direct sum \(A_m = \bigoplus_{i=1}^{N_m} A_{m,i} \) where each summand \(A_{m,i} \) has spectrum being one of the clopen sets. In particular, this means that for every \(m \), for every projection \(p \in G_m^{(2)} \), for \(1 \leq i \leq N_m \), the map \(\pi \mapsto tr(\pi(1_{A_{m,i}} \phi_m(p) 1_{A_{m,i}})) \) is constant on the spectrum \(\overline{A_{m,i}} \) (where “\(tr \)”, as always, denotes the unital normalized trace on the image of \(\pi \)). We may assume that \(1_{A_{m,i}} = 1_A \) for every \(m \). Let \(\mathcal{B} = \bigoplus_{i=1}^\infty \bigoplus_{m=1}^\infty \bigoplus_{i=1}^{N_m} A_{m,i} = \bigoplus_{i=1}^\infty B_i \). Then the multiplier algebra of \(\mathcal{B} \) is \(\mathcal{M}(\mathcal{B}) = \prod_{i=1}^\infty B_i \) such that each \(B_i \) is one of the \(A_{m,i} \).

For \(a \in \bigcup_{m=1}^\infty G_m \) and for each strictly positive integer \(l \), let \((a, l) \) be an element \(b \in B_l \) defined in the following manner: Suppose that \(B_i \) is the summand \(A_{m,i} \) of \(\mathcal{M}(\mathcal{B}) \). If \(a \) is in \(G_m \), then let \((a, l) = 1_{B_l} \phi_m(a) 1_{B_l} \). Otherwise, let \((a, l) \) be zero.

We may assume that for every integer \(l \), \((1_A, l) = 1_{B_l} \). We have an \(*\)-homomorphism \(\Gamma: \mathcal{A} \rightarrow \mathcal{M}(\mathcal{B})/\mathcal{B} \) which is defined as follows: suppose that \(a \in \mathcal{A} \). Let \(\{a_n\}_{n=1}^\infty \) be a sequence in \(\bigcup_{m=1}^\infty G_m \) which converges to \(a \). Then we let \(\Gamma(a) = \bigoplus \lim_{n \rightarrow \infty} (a_n,l)/\mathcal{B} \). One can check that \(\Gamma \) is indeed a well-defined \(*\)-homomorphism.
Now since \mathcal{A} is simple, Γ is either injective or the zero map. Since $(1, \mathcal{A}, l) = B_l$ for every l, Γ is unital and hence must be injective.

For each l, let τ_l be a unital trace on B_l obtained by a point evaluation on B_l, the spectrum of B_l (that is, τ_l is obtained by composing an irreducible representation of B_l with the usual unital trace on matrices).

Let $\epsilon > 0$ and a finite subset F of \mathcal{A} be given. To show that \mathcal{A} is TAF, we need to prove that there is a projection $p \in \mathcal{A}$ and there is a finite dimensional C^*-subalgebra \mathcal{C} of \mathcal{A}, with $1_{\mathcal{C}} = 1 - p$, such that:

1. $\sup_{r \in T(\mathcal{A})} \tau(r) < \epsilon$,
2. $\|pf - fp\| < \epsilon$ for every $f \in F$,
3. $(1 - p)f(1 - p)$ is within ϵ of an element of \mathcal{C} for every $f \in F$.

So, let ϵ and F be given as above. To simplify notation, we may assume that each element of F has norm less than or equal to one (adjust ϵ if necessary).

Claim. There is a strictly positive integer L such that for each $l \geq L$, there is a projection p_l in B_l and a finite dimensional C^*-subalgebra \mathcal{C}_l of B_l with $1_{\mathcal{C}_l} = B_l - p_l$ such that:

1. if B_l is the summand $A_{m,i}$, then p_l has the form $1_{B_l} \phi(m)(1_{B_l})$ for some projection $\phi \in \mathcal{G}^{(2)}_m$,
2. $\tau_l(p_l) < \epsilon/100$,
3. $\|pf_l - fp_l\| < \epsilon/100$ for every $f \in F$,
4. $L_{\mathcal{C}_l}f(1 - p)$ is within $\epsilon/100$ of an element of \mathcal{C}_l for every $f \in F$.

Now suppose, to the contrary, that the claim is not true. Let $\{l_\alpha\}_{\alpha \in I}$ be a subnet of the sequence of positive integers such that for each $\alpha \in I$, the statement of the claim does not hold for $l = l_\alpha$. Now for each integer k, let $\tilde{\tau}_k$ be the trace on $\mathcal{M}(B) = \prod_{k=1}^{\infty} B_{l_k}$ given by $\tilde{\tau}_k((a_i)_{i=1}^{\infty}) = \tau_k(a_k)$ ($\tilde{\tau}_k$ is defined two paragraphs before the claim, and $a_i \in B_{l_i}$ for every i. Now since $T(\mathcal{M}(B))$ is w^*-compact, the net $\{\tilde{\tau}_\alpha\}_{\alpha \in I}$ has a converging subnet. For simplicity, let us assume that $\{\tilde{\tau}_\alpha\}_{\alpha \in I}$ converges to, say $\tilde{\tau}$. Note that $\tilde{\tau}$ induces a trace on $\mathcal{M}(B)/B$, which we also denote by $\tilde{\tau}$.

Since $\Gamma : A \to \mathcal{M}(B)/B$ is a unital $*$-embedding, $\tilde{\tau} \circ \Gamma$ is a tracial state on A. For simplicity, we will also denote $\tilde{\tau} \circ \Gamma$ by $\tilde{\tau}$.

Note that the argument of Theorem 1.3 actually works for any (arbitrary) single trace (see either [1, Corollary 7.11], [15] or [17, Theorem 5.16], and in the locally AH case, an elementary proof can be obtained using the argument in the last section of [11]). Hence, we have that there exists a projection $q \in A$ and a finite dimensional C^*-subalgebra D of A with $1_D = 1 - q$ such that:

1. $\tilde{\tau}(q) < \epsilon/1000$,
2. $\|qf - fq\| < \epsilon/1000$ for every $f \in F$, and
3. $(1 - q)f(1 - q)$ is within $\epsilon/1000$ of an element of D for every $f \in F$.

Now by our choices of the $A_{m,s}$ and $\mathcal{G}^{(2)}_{m,s}$, there is a positive integer $M > 0$, and there is a sequence $\{\epsilon_m\}_{m=1}^{\infty}$ of positive real numbers converging to zero, such that for each $m \geq M$, we have the following:

(a) There is a matrix algebra, say D_m, which is a subalgebra of A_m, and there is a unitary element U of A such that (i) $D_m = UDU^*$, and (ii) U is within ϵ_m of 1_A.

(b) $UqU^* = 1_A - 1_{D_m}$, and $1_A - 1_{D_m}$ is an element of $\mathcal{G}^{(2)}_m$. (Recall that $1_A = 1_{A_{m,s}}$.)

(c) $(1_A - 1_{D_m})a$ is within $\epsilon/500$ of $a(1_A - 1_{D_m})$, for every $a \in F$.

Now suppose that for each m, $A_m = \bigoplus_{l=L_m}^{L_m+1} B_l$ (so $B_{L_m+k} = A_{m,k+1}$ and $L_{m+1} - L_m = N_m$). And suppose that for $m \geq M$, $1_A - q_{L_m} \leq q_{L_m+1} \odot q_{L_m+2} \oplus \cdots \oplus q_{L_m+1}$, where q_{L_m+k} is a projection in B_{L_m+k}, for each k. Then $\Gamma \left(q \right) = (0, 0, \ldots, 0, q_{L_m}, q_{L_m+1}, q_{L_m+2}, \ldots)/B$, where q_{L_m} is in the L_mth position, and where we view B as $B = \bigoplus_{l=1}^{\infty} B_l$.

By the definition of \hat{r}, and since $\hat{r}(q) < \epsilon/1000$, we must have that $\lim_{m} \tau_{m}(q_{L_m}) < \epsilon/1000$. Choose m_0 such that for $\alpha \geq m_0$, $\tau_{m}(q_{L_m}) < \epsilon/1000$. Let m_0 be the integer such that B_{L_m} comes from A_{m_0}. Choosing m_0 “large” enough if necessary, we may assume that $m_0 \geq M$ and $\epsilon_{m_0} < \epsilon/1000$. Hence, taking $l = l_{m_0}, m = m_0, \mathcal{C} = 1_{B_{L_m}} \bigoplus_{l=1}^{m_0} 1_{B_{L_m}}$, and $\nu_l = q_{L_m}$, we have that clauses (1)–(4) of the Claim are satisfied for $l = l_{m_0}$. This is a contradiction. Hence, the Claim must be true.

So let L and \mathcal{T} and $p/\nu l \geq \epsilon$ be as in the Claim. Recalling our definition of B and the B_ls, suppose that m, N_m are integers such that $B_{L+j} = A_{m,j}$ for $1 \leq j \leq N_m$ and $A_m = \bigoplus_{j=1}^{N_m} A_{m,j} = \bigoplus_{j=1}^{N_m} B_{L+j}$. Let $r = df \bigoplus_{j=1}^{N_m} p_{L+j}$ and $\mathcal{E} = df \bigoplus_{j=1}^{N_m} \mathcal{C}_{L+j}$. Then (a) $\| f - r \| < \epsilon$ for every $f \in \mathcal{F}$, and (c) $(1 - r)f(1 - r)$ is within ϵ of an element of the (finite-dimensional C^*-algebra) \mathcal{E} for every $f \in \mathcal{F}$.

Also, by clause (1) of the Claim, it follows that for $1 \leq j \leq N_m$, the map on $B_{l_{m_0}}$ (the spectrum of B_{L+1}), given by $\pi \mapsto \tau_r(\pi(p_{L+j}))$, is a constant rational-valued function (here, τ_r is the unital trace on matrices). Hence, since $\tau_{L+j}(p_{L+j}) < \epsilon/100$ for $1 \leq j \leq N_m$, it follows that $\tau(r) < \epsilon$ for every $\tau \in T(A)$.

So since ϵ and \mathcal{F} are arbitrary, A is TAF. \hfill \Box

References

Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

E-mail address: pwn@erdos.math.unb.ca

Current address: The Fields Institute for Research in Mathematical Sciences, 222 College Street, Toronto, Ontario, Canada M5T 3J1