Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Symmetric Bush-type Hadamard matrices of order $ 4m^4$ exist for all odd $ m$


Authors: Mikhail Muzychuk and Qing Xiang
Journal: Proc. Amer. Math. Soc. 134 (2006), 2197-2204
MSC (2000): Primary 05B20
DOI: https://doi.org/10.1090/S0002-9939-06-08229-3
Published electronically: February 3, 2006
MathSciNet review: 2213691
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using reversible Hadamard difference sets, we construct symmetric Bush-type Hadamard matrices of order $ 4m^4$ for all odd integers $ m$.


References [Enhancements On Off] (What's this?)

  • 1. T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Vol. I. Second edition. Encyclopedia of Mathematics and its Applications, 69. Cambridge University Press, Cambridge, 1999. MR 1729456 (2000h:05019)
  • 2. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance Regular Graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18. Springer-Verlag, Berlin, 1989. MR 1002568 (90e:05001)
  • 3. K. A. Bush, Unbalanced Hadamard matrices and finite projective planes of even order, J. Combinatorial Theory Ser. A 11 (1971), 38-44. MR 0274310 (43:75)
  • 4. Y. Q. Chen, On the existence of abelian Hadamard difference sets and a new family of difference sets, Finite Fields Appl. 3 (1997), 234-256. MR 1459826 (98h:05036)
  • 5. J. A. Davis, J. Jedwab, A unifying construction for difference sets, J. Combin. Theory Ser. A 80 (1997), 13-78. MR 1472105 (98g:05021)
  • 6. M. van Eupen, V. D. Tonchev, Linear codes and the existence of a reversible Hadamard difference set in $ Z\sb 2\times Z\sb 2\times Z\sp 4\sb 5$. J. Combin. Theory Ser. A 79 (1997), 161-167. MR 1449754 (98a:05026)
  • 7. R. W. Goldbach, H. L. Claasen, $ 3$-class association schemes and Hadamard matrices of a certain block form, European J. Combin. 19 (1998), 943-951. MR 1657935 (99j:05196)
  • 8. Y. Ionin, New symmetric designs from regular Hadamard matrices, Electronic J. Combin. 5 (1998), R1. MR 1486394 (98j:05020)
  • 9. Z. Janko, The existence of a Bush-type Hadamard matrix of order 36 and two new infinite classes of symmetric designs, J. Combin. Theory, Ser. A 95 (2001), 360-364. MR 1845147 (2002e:05032)
  • 10. Z. Janko, H. Kharaghani, and V. D. Tonchev, A Bush-type Hadamard matrix of order 100 and two new infinite classes of symmetric designs, J. Combin. Des. 9 (2001), 72-78. MR 1803628 (2001j:05032)
  • 11. Z. Janko, H. Kharaghani, and V. D. Tonchev, The existence of a Bush-type Hadamard matrix of order 324 and two new infinite classes of symmetric designs, Designs, Codes and Cryptography 24 (2001), 225-232. MR 1850384 (2002g:05040)
  • 12. D. Jungnickel, H. Kharaghani, Balanced generalized weighing matrices and their applications, Combinatorics '04, Capomulini, Catania, Italy, 2004.
  • 13. H. Kharaghani and B. Tayfeh-Rezaie, A Hadamard matrix of order 428, J. Combin. Designs 13 (2005), 435-440.
  • 14. H. Kharaghani, New classes of weighing matrices, Ars Combinatoria 19 (1985), 69-72. MR 0810264 (87a:05042)
  • 15. H. Kharaghani, On the twin designs with the Ionin-type parameters, Electronic J. Combin. 7 (2000), R1. MR 1736717 (2000m:05027)
  • 16. H. Kharaghani, On the Siamese twin designs, In: Finite Fields and Applications (Eds. D. Jungnickel and H. Niederreiter), 303-312. Springer-Verlag, Berlin (2001). MR 1849096 (2002g:05041)
  • 17. R. J. Turyn, A special class of Williamson matrices and difference sets, J. Combin. Theory Ser. A 36 (1984), 111-115. MR 0728508 (85h:05032)
  • 18. W. D. Wallis, On a problem of K. A. Bush concerning Hadamard matrices, Bull. Austral. Math. Soc. 6 (1972), 321-326. MR 0311490 (47:52)
  • 19. R. M. Wilson and Q. Xiang, Constructions of Hadamard difference sets, J. Combin. Theory Ser. A 77 (1997), 148-160. MR 1426743 (97m:05039)
  • 20. M. Y. Xia, Some infinite classes of special Williamson matrices and difference sets, J. Combin. Theory Ser. A 61 (1992), 230-242. MR 1184992 (93k:05029)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 05B20

Retrieve articles in all journals with MSC (2000): 05B20


Additional Information

Mikhail Muzychuk
Affiliation: Department of Computer Sciences and Mathematics, Netanya Academic College, University St. 1, 42365, Netanya, Israel
Email: mikhail@netvision.net.il

Qing Xiang
Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716
Email: xiang@math.udel.edu

DOI: https://doi.org/10.1090/S0002-9939-06-08229-3
Keywords: Bush-type Hadamard matrix, Hadamard difference set, Hadamard matrix, reversible Hadamard difference set, strongly regular graph
Received by editor(s): December 20, 2004
Received by editor(s) in revised form: March 4, 2005
Published electronically: February 3, 2006
Additional Notes: The second author’s research was supported in part by NSF Grant DMS 0400411.
Communicated by: John R. Stembridge
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society