Binomial coefficients and quadratic fields

Author:
Zhi-Wei Sun

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2213-2222

MSC (2000):
Primary 11B65; Secondary 11B37, 11B68, 11R11

DOI:
https://doi.org/10.1090/S0002-9939-06-08262-1

Published electronically:
February 3, 2006

MathSciNet review:
2213693

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a real quadratic field with discriminant where is an odd prime. For we determine modulo in terms of a Lucas sequence, the fundamental unit and the class number of .

**[C]**H. Cohn,*Advanced Number Theory*, Dover Publ. Inc., New York, 1962. MR**0594936 (82b:12001)****[CP]**R. Crandall and C. Pomerance,*Prime Numbers: A Computational Perspective*, Springer, New York, 2001. MR**1821158 (2002a:11007)****[DSS]**K. Dilcher, L. Skula and I. Sh. Slavutskii,*Bernoulli numbers, 1713/1990*, Queen's Papers in Pure and Appl. Math.**87**(1990). The website of the on-line version is`http://www.mathstat.``dal.ca/dilcher/bernoulli.html`. MR**1119305 (92f:11001)****[G]**A. Granville,*Arithmetic properties of binomial coefficients.I. Binomial coefficients modulo prime powers,*in: Organic mathematics (Burnaby, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997. MR**1483922 (99h:11016)****[GS]**A. Granville and Z. W. Sun,*Values of Bernoulli polynomials*, Pacific J. Math.**172**(1996), 117-137. MR**1379289 (98b:11018)****[IR]**K. Ireland and M. Rosen,*A Classical Introduction to Modern Number Theory*(Graduate Texts in Math.; 84), 2nd ed., Springer, New York, 1990. MR**1070716 (92e:11001)****[L]**M. Lerch,*Zur Theorie des Fermatschen Quotienten*, Math. Ann.**60**(1905), 471-490.**[R]**P. Ribenboim,*The Book of Prime Number Records*, Springer, New York, 1988. MR**0931080 (89e:11052)****[S1]**Z. W. Sun,*Products of binomial coefficients modulo*, Acta Arith.**97**(2001), 87-98. MR**1819624 (2002m:11013)****[S2]**Z. W. Sun,*On the sum and related congruences*, Israel J. Math.**128**(2002), 135-156. MR**1910378 (2003d:11026)****[S3]**Z. W. Sun,*General congruences for Bernoulli polynomials*, Discrete Math.**262**(2003), 253-276. MR**1951393 (2003m:11037)****[W]**H. C. Williams,*Some formulae concerning the fundamental unit of a real quadratic field*, Discrete Math.**92**(1991), 431-440. MR**1140604 (92j:11126)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
11B65,
11B37,
11B68,
11R11

Retrieve articles in all journals with MSC (2000): 11B65, 11B37, 11B68, 11R11

Additional Information

**Zhi-Wei Sun**

Affiliation:
Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

Email:
zwsun@nju.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-06-08262-1

Received by editor(s):
March 4, 2004

Received by editor(s) in revised form:
March 6, 2005

Published electronically:
February 3, 2006

Additional Notes:
The author was supported by the National Science Fund for Distinguished Young Scholars (No. 10425103) and the Key Program of NSF (No. 10331020) in China.

Communicated by:
Wen-Ching Winnie Li

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.