A matricial corona theorem

Authors:
Tavan Trent and Xinjun Zhang

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2549-2558

MSC (2000):
Primary 32A65, 46J20

DOI:
https://doi.org/10.1090/S0002-9939-06-08172-X

Published electronically:
April 7, 2006

MathSciNet review:
2213732

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a usual corona-type theorem on a space of functions automatically extends to a matrix version.

**[1]**G. Birkhoff and S. MacLane,*Algebra*, MacMillan, Toronto, 1971.**[2]**L. Carleson,*Interpolation by bounded analytic functions and the corona problem*, Annals of Math.**76**(1962), 547-559. MR**0141789 (25:5186)****[3]**S. Fisher,*Function Theory on Planar Domains, a Second Course in Complex Analysis*, John Wiley and Sons, New York, 1983. MR**0694693 (85d:30001)****[4]**F. Forelli,*Bounded holomorphic functions and projections*, Illinois J. Math.**10**(1966), 367-380. MR**0193534 (33:1754)****[5]**P. A. Fuhrmann,*On the corona theorem and its applications to spectral problems in Hilbert space*, Trans. Amer. Math. Soc.**132**(1968), 55-66. MR**0222701 (36:5751)****[6]**A. Nicolau,*The corona property for bounded analytic functions in some Besov spaces*, Proc. Amer. Math. Soc.**110**(1990), 135-140. MR**1017007 (90m:46090)****[7]**N. K. Nikolski,*Treatise on the Shift Operator*, Springer-Verlag, New York, 1985. MR**0827223 (87i:47042)****[8]**M. Rosenblum,*A corona theorem for countably many functions*, Integral Equa. Oper. Theory**3**(1980), 125-137. MR**0570865 (81e:46034)****[9]**E. L. Stout,*Bounded holomorphic functions on finite Riemann surfaces*, Trans. Amer. Math. Soc.**120**(1965), 255-285. MR**0183882 (32:1358)****[10]**V. A. Tolokonnikov,*Estimates in Carleson's corona theorem and finitely generated ideals in the algebra*, Functional Anal. I Prilozhen**14**(1980), 85-86 (in Russian). MR**0595742 (82a:46058)****[11]**S. R. Treil,*Angles between coinvariant subspaces and an operator-valued corona problem, a question of Szökefalvi-Nagy*, Soviet Math. Dokl.**38**(1989), 394-399. MR**0981054 (90b:47057)****[12]**T. T. Trent,*A corona theorem for multipliers on Dirichlet space*, Integral Equa. Oper. Theory**49**(2004), 123-139. MR**2057771****[13]**-,*A new estimate for the vector-valued corona problem*, J. Func. Anal.**189**(2002), 267-282. MR**1887635 (2002m:30067)****[14]**-,*An -corona theorem on the bidisk for infinitely many functions*, submitted.**[15]**X. Zhang,*A matrix version of corona theorem for algebras of functions on reproducing kernel Hilbert spaces*, Ph.D. dissertation, The University of Alabama, Tuscaloosa, AL, August 2004.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
32A65,
46J20

Retrieve articles in all journals with MSC (2000): 32A65, 46J20

Additional Information

**Tavan Trent**

Affiliation:
Department of Mathematics, The University of Alabama, Box 870350, Tuscaloosa, Alabama 35487-0350

Email:
ttrent@gp.as.ua.edu

**Xinjun Zhang**

Affiliation:
Department of Mathematics, The University of Alabama, Box 870350, Tuscaloosa, Alabama 35487-0350

Email:
zhang010@bama.ua.edu

DOI:
https://doi.org/10.1090/S0002-9939-06-08172-X

Keywords:
Matrix corona theorem

Received by editor(s):
September 8, 2004

Received by editor(s) in revised form:
January 13, 2005

Published electronically:
April 7, 2006

Additional Notes:
This work was partially supported by NSF Grant DMS-0400307.

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.