Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Arens-Michael enveloping algebras and analytic smash products


Author: A. Yu. Pirkovskii
Journal: Proc. Amer. Math. Soc. 134 (2006), 2621-2631
MSC (2000): Primary 46M18, 46H05, 16S30, 16S40, 18G25
DOI: https://doi.org/10.1090/S0002-9939-06-08251-7
Published electronically: February 17, 2006
MathSciNet review: 2213741
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{g}$ be a finite-dimensional complex Lie algebra, and let $ U(\mathfrak{g})$ be its universal enveloping algebra. We prove that if $ \widehat{U}(\mathfrak{g})$, the Arens-Michael envelope of $ U(\mathfrak{g})$ is stably flat over $ U(\mathfrak{g})$ (i.e., if the canonical homomorphism $ U(\mathfrak{g})\to\widehat{U}(\mathfrak{g})$ is a localization in the sense of Taylor (1972), then $ \mathfrak{g}$ is solvable. To this end, given a cocommutative Hopf algebra $ H$ and an $ H$-module algebra $ A$, we explicitly describe the Arens-Michael envelope of the smash product $ A\char93 H$ as an ``analytic smash product'' of their completions w.r.t. certain families of seminorms.


References [Enhancements On Off] (What's this?)

  • 1. Bonneau, P., Flato, M., Gerstenhaber, M., Pinczon, G. The hidden group structure of quantum groups: strong duality, rigidity and preferred deformations, Comm. Math. Phys. 161 (1994), 125-156. MR 1266072 (95b:17016)
  • 2. Doplicher, S., Kastler, D., Robinson, D. W. Covariance algebras in field theory and statistical mechanics. Comm. Math. Phys. 3 (1966), 1-28. MR 0205095 (34:4930)
  • 3. Dosiev, A. A. Homological dimensions of the algebra formed by entire functions of elements of a nilpotent Lie algebra, Funct. Anal. Appl. 37 (1) (2003), 61-64. MR 1988010 (2004d:46054)
  • 4. Helemskii, A. Ya. The Homology of Banach and Topological Algebras, Moscow University Press, 1986 (Russian); English transl.: Kluwer Academic Publishers, Dordrecht, 1989. MR 1093462 (92d:46178)
  • 5. Helemskii, A. Ya. Banach and Polynormed Algebras: General Theory, Representations, Homology, Nauka, Moscow, 1989 (Russian); English transl.: Oxford University Press, 1993. MR 1031991 (91h:46001)
  • 6. Kiehl, R. and Verdier, J. L. Ein einfacher Beweis des Kohärenzsatzes von Grauert, Math. Ann. 195 (1971), 24-50. MR 0306555 (46:5678)
  • 7. Koszul, J.-L. Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65-127. MR 0036511 (12:120g)
  • 8. McConnell, J. C.; Robson, J. C. Noncommutative Noetherian Rings. John Wiley & Sons, Ltd., Chichester, 1987. MR 0934572 (89j:16023)
  • 9. Mitiagin, B.; Rolewicz, S.; Zelazko, W. Entire functions in $ B_0$-algebras. Studia Math. 21 (1961/1962), 291-306. MR 0144222 (26:1769)
  • 10. Neeman, A. and Ranicki, A. Noncommutative localization and chain complexes. I. Algebraic $ K$- and $ L$-theory, Preprint arXiv.org:math.RA/0109118.
  • 11. Pirkovskii, A. Yu. Stably flat completions of universal enveloping algebras, Preprint arXiv.org:math.FA/0311492.
  • 12. Rieffel, M. A. Induced Banach representations of Banach algebras and locally compact groups. J. Functional Analysis 1 (1967), 443-491. MR 0223496 (36:6544)
  • 13. Schweitzer, L. B. Dense $ m$-convex Fréchet subalgebras of operator algebra crossed products by Lie groups. Internat. J. Math. 4 (4) (1993), 601-673. MR 1232986 (94g:46058)
  • 14. Sweedler, M. E. Hopf algebras. Benjamin, New York, 1969. MR 0252485 (40:5705)
  • 15. Taylor, J. L. Homology and cohomology for topological algebras, Adv. Math. 9 (1972), 137-182. MR 0328624 (48:6966)
  • 16. Taylor, J. L. A general framework for a multi-operator functional calculus, Adv. Math. 9 (1972), 183-252. MR 0328625 (48:6967)
  • 17. Taylor, J. L. Functions of several noncommuting variables, Bull. Amer. Math. Soc. 79 (1973), 1-34. MR 0315446 (47:3995)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46M18, 46H05, 16S30, 16S40, 18G25

Retrieve articles in all journals with MSC (2000): 46M18, 46H05, 16S30, 16S40, 18G25


Additional Information

A. Yu. Pirkovskii
Affiliation: Department of Nonlinear Analysis and Optimization, Faculty of Science, Peoples’ Friendship University of Russia, Mikluho-Maklaya 6, 117198 Moscow, Russia
Email: pirkosha@sci.pfu.edu.ru, pirkosha@online.ru

DOI: https://doi.org/10.1090/S0002-9939-06-08251-7
Received by editor(s): July 20, 2004
Received by editor(s) in revised form: March 24, 2005
Published electronically: February 17, 2006
Additional Notes: This work was partially supported by the RFBR grants 05-01-00982 and 05-01-00001, and by the President of Russia grant MK-2049.2004.1.
Communicated by: Martin Lorenz
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society