SPECTRA OF ALGEBRAS OF ENTIRE FUNCTIONS ON BANACH SPACES

ANDRIY ZAGORODNYUK

(Communicated by N. Tomczak-Jaegermann)

Abstract. We obtain an explicit description of the spectrum (set of closed maximal ideals) of $H_b(X)$, algebra of analytic functions on a Banach space X which are bounded on bounded subsets. We show that the spectrum of $H_b(X)$ admits a natural linear structure. Some applications to the algebra of uniformly continuous and bounded analytic functions on the unit ball $B \subset X$ are indicated.

Let A be a complex commutative topological algebra. Let us denote by $M(A)$ the spectrum (set of closed maximal ideals = set of continuous characters = set of continuous complex-valued homomorphisms) of A. Recall that A is semisimple if the complex homomorphisms from $M(A)$ separate points of A. It is well known that every semisimple commutative Fréchet algebra A is isomorphic to some subalgebra of continuous functions on $M(A)$ endowed with a natural topology. More exactly, for every $a \in A$ there exists a function $\hat{a} : M(A) \to \mathbb{C}$ defined by $\hat{a}(\phi) := \phi(a)$. The weakest topology on $M(A)$ such that all functions $\hat{a}, a \in A$, are continuous is called the Gelfand topology. The Gelfand topology coincides with the weak-star topology of the strong dual space A', restricted to $M(A)$. If A is a Banach algebra, $M(A)$ is a weak-star compact subset of the unit ball of A'.

If A is a uniform algebra of continuous functions on a metric space G, then for any $x \in G$ the point evaluation functional $\delta(x) : f \mapsto f(x)$ belongs to $M(A)$.

The purpose of this paper is to describe the spectrum of the Fréchet algebra $H_b(X)$ of entire analytic functions of bounded type on a Banach space X and to study some related questions of infinite-dimensional holomorphy.

The problem of description of the spectrum of $H_b(X)$ was first studied by Aron, Cole and Gamelin [3, 4]. Using the Aron-Berner extension operation [2, 10], they showed, in particular, that X'' belongs to the spectrum of $H_b(X)$. In [5] it is proved that this inclusion is proper if there exists a polynomial on X which is not weakly continuous on bounded sets. This approach was generalized for algebra-valued analytic functions by García et al. in [13]. Some analytic structure on the set of maximal ideals was considered in [5] (for generalization for algebra-valued functions see [17]). In [22] Mujica investigated ideals of analytic functions of bounded type on...
Tsirelson’s space T and showed that each character on $H_b(T)$ is a point evaluation functional. Homomorphisms of H_b were studied by Carando, García and Maestre in \cite{9}. In \cite{11} Alencar et al. considered maximal ideals of algebras of symmetric analytic functions on ℓ_p.

In this paper we show that every element of the spectrum of $H_b(X)$ can be represented by a sequence of functionals $(u_k)_{k=1}^{\infty}$ such that each u_k belongs to a Banach space E_k, where $E_1 = X''$ and E_n coincides with a special subspace of linear functionals on n-homogeneous polynomials. It is also shown that the spectrum of $H_b(X)$ contains the linear space of all finite sequences $(u_1, \ldots, u_m, 0, 0, \ldots)$. Finally, some related examples are considered.

For background on analytic functions on infinite-dimensional spaces, we refer the reader to \cite{13} or to \cite{21}. For details on the Aron-Berner extension we refer to \cite{8}.

Recall that for every polynomial $P \in \mathcal{P}(n)X$ there exists a (necessarily unique) symmetric n-linear form A_P, associated with P such that $A_P(x, \ldots, x) = P(x)$. We will write $A_P(x_1^{k_1}, \ldots, x_n^{k_n})$ instead of $A_P(x_1, \ldots, x_1, \ldots, x_n, \ldots, x_n)$. We will use the fact that $\mathcal{P}(n)X$ is isomorphic to the dual space of the symmetric projective n-fold tensor product $\otimes^{n}_s, \pi X$ of X.

Let us denote by $A_n(X)$ the closure of the algebra, generated by polynomials from $\mathcal{P}(\leq n)X$ with respect to the uniform topology on bounded subsets. It is clear that $A_1(X) \cap \mathcal{P}(n)X = \mathcal{P}_c(n)X$ and $A_n(X)$ is a Fréchet algebra of entire analytic functions on X for every n. The closure of the algebra of all polynomials $\mathcal{P}(X)$ with respect to the uniform topology on bounded subsets is denoted by $H_b(X)$ and is called the algebra of entire functions of bounded type on X. It is well known that $H_b(X)$ consists of all entire functions that are bounded on bounded subsets. The closure of the algebra of all polynomials with respect to the uniform topology on the unit ball B, $H^{uc}_B(B)$, is the algebra of all analytic functions on B which are uniformly continuous and bounded. We will use the short notation M_b and M_{uc} for the spectra $M(H_b(X))$ and $M(H^{uc}_B(B))$ respectively.

According to \cite{3}, every continuous functional $\phi \in H_b(X)'$ can be represented by $\phi = \sum_{k=0}^{\infty} \phi_k$, where $\phi_k = \pi_k(\phi)$ is the restriction of ϕ to $\mathcal{P}(k)X$. The infimum of all $r > 0$, $R(\phi)$ such that ϕ is continuous with respect to the norm of uniform convergence on the ball rB is called the radius function of ϕ. It is known \cite{3} that

$$R(\phi) = \limsup_{n \to \infty} \|\phi_n\|^{1/n}.$$

For every polynomial $P \in \mathcal{P}(mk)X$ we denote by $P_{(m)}(u)$ the polynomial from $\mathcal{P}(k \otimes^{m}\pi s)X$ such that $P_{(m)}(x^{\otimes m}) = P(x)$, where $x^{\otimes m} = x \otimes \cdots \otimes x$.

Lemma 1. Let $\phi \in H_b(X)'$ such that $\phi(P) = 0$ for every $P \in \mathcal{P}(mX) \cap A_{m-1}(X)$, where m is a fixed positive integer and $\phi_m \neq 0$. Then there is $\psi \in M_b$ such that $\psi_k = 0$ for $k < m$ and $\psi_m = \phi_m$. The radius function $R(\psi) = \|\phi_m\|^{1/m}$.

Proof. Since $\phi_m \neq 0$, there is an element $w \in (\mathcal{S}_{s,n}^m X)'$, $w \neq 0$ such that for any m-homogeneous polynomial P, $\phi(P) = \phi_m(P) = \bar{P}_m(w)$, where \bar{P}_m is the Aron-Berner extension of the linear functional P_m from $\mathcal{S}_{s,n}^m X$ to $(\mathcal{S}_{s,n}^m X)'$ and $\|w\| = \|\phi_m\|$. For an arbitrary n-homogeneous polynomial Q we set

\[
\psi(Q) = \begin{cases}
\bar{Q}_m(w) & \text{if } n = mk \text{ for some } k \geq 0, \\
0 & \text{otherwise,}
\end{cases}
\]

where \bar{Q}_m is the Aron-Berner extension of the k-homogeneous polynomial Q_m from $\mathcal{S}_{s,n}^m X$ to $(\mathcal{S}_{s,n}^m X)'$.

Let (u_α) be a net from $\mathcal{S}_{s,n}^m X$ that converges to w in the weak-star topology of $(\mathcal{S}_{s,n}^m X)'$, where α belongs to an index set \mathfrak{A}. We can assume that u_α has a representation $u_\alpha = \sum_{j=1}^{\infty} x_{j,\alpha}^m$ for some $x_{j,\alpha} \in X$. Let us show that $\psi(PQ) = \psi(P)\psi(Q)$ for any homogeneous polynomials P and Q. Let us suppose first that $\deg(PQ) = nr + l$ for some integers $r \geq 0$ and $l > 0$. Then P or Q has degree equal to $mk + s$, $k \geq 0$, $m > s > 0$. Thus, by the definition, $\psi(PQ) = 0$ and $\psi(P)\psi(Q) = 0$. Suppose that $\deg(PQ) = nr$ for some integer $r \geq 0$. If $\deg P = mk$ and $\deg Q = mn$ for $k, n \geq 0$, then $\deg(PQ) = m(k+n)$ and $\psi(PQ) = (PQ)_m(w) = \bar{P}_m(w)\bar{Q}_m(w) = \psi(P)\psi(Q)$.

Now let $\deg P = mk + l$ and $\deg Q = mn + r$, $l, r > 0$, $l + r = m$. Write $\nu = 1/(\deg P + \deg Q)! = 1/(m(k+n+1))!$. Let A_{PQ} denote the symmetric multilinear map, associated with PQ. Then

\[
A_{PQ}(x_1, \ldots, x_{m(k+n+1)}) = \nu \sum_{\sigma \in S_{m(k+n+1)}} A_P(x_{\sigma(1)}, \ldots, x_{\sigma(mk+l)}) A_Q(x_{\sigma(mk+l+1)}, \ldots, x_{\sigma(m(k+n+1)})],
\]

where $S_{m(k+n+1)}$ is the group of permutations on $\{1, \ldots, m(k+n+1)\}$. Thus for $\alpha_1, \ldots, \alpha_{k+n+1} \in \mathfrak{A}$ we have

\[
\psi(PQ) = \psi(\bar{P}_Q)_m(w) = \lim_{\alpha_1, \ldots, \alpha_{k+n+1} \in \mathfrak{A}} \bar{A}_{PQ_m}(u_{\alpha_1}, \ldots, u_{\alpha_{k+n+1}})
\]

\[
= \lim_{\alpha_1, \ldots, \alpha_{k+n+1} \in \mathfrak{A}} \bar{A}_{PQ_m} \left(\sum_{j=1}^{\infty} x_{j,\alpha_1}^m \cdots, \sum_{j=1}^{\infty} x_{j,\alpha_{k+n+1}}^m \right)
\]

\[
= \nu \sum_{\sigma \in S_{m(k+n+1)}} \alpha_{\sigma(1)}, \ldots, \alpha_{\sigma(k+n+1)} \sum_{j_1, \ldots, j_{k+n+1} = 1}^{\infty} A_P(x_{j_{\sigma(1)}}, \alpha_{\sigma(1)}) \cdots, x_{j_{\sigma(k+n+1)}}, \alpha_{\sigma(k+n+1)}).
\]

Fix some $\sigma \in S_{m(k+n+1)}$ and fix all $x_{j_{\sigma(i)}}, \alpha_{\sigma(i)}$, for $i \leq k$ and for $i > k + 1$. Then

\[
\sum_{j_1, \ldots, j_{k+n+1} = 1}^{\infty} \lim_{\alpha_{\sigma(k+n+1)} \in \mathfrak{A}} \sum_{j_{\sigma(k+n+1)} = 1}^{\infty} A_P(x_{j_{\sigma(1)}}, \alpha_{\sigma(1)}) \cdots, x_{j_{\sigma(k+n+1)}}, \alpha_{\sigma(k+n+1)}) \times A_Q(x_{j_{\sigma(k+n+1)}}, \alpha_{\sigma(k+n+1)}).
\]
because for fixed $x_{k(i), \alpha(i)}$, $i \leq k$,
\[
P_\sigma(y) := \sum_{j_1, \ldots, j_k, j_{k+2}, \ldots, j_{k+n+1} = 1}^\infty A_P(x_{j_1(\sigma(1)), \alpha(i_1)}, \ldots, x_{j_k(\sigma(k)), \alpha(i_k)}, y^l)
\]
is an l-homogeneous polynomial and for fixed $x_{k(i), \alpha(i)}$, $i > k + 1$,
\[
Q_\sigma(y) := \sum_{j_1, \ldots, j_k, j_{k+2}, \ldots, j_{k+n+1} = 1}^\infty A_Q(y^r, x_{j_{k+2}(\sigma(k+2)), \alpha(i_{k+2})}, \ldots, x_{j_{k+n+1}(\sigma(k+n+1)), \alpha(i_{k+n+1})})
\]
is an r-homogeneous polynomial. Thus $P_\sigma Q_\sigma \in A_{m-1}(X)$. Hence
\[
\lim_{\alpha}(P_\sigma Q_\sigma)_{(m)}(u_{\alpha}) = \psi(P_\sigma Q_\sigma) = 0
\]
for every fixed σ. Thus $\psi(PQ) = 0$. On the other hand, $\psi(P)\psi(Q) = 0$ by the definition of ψ. So $\psi(PQ) = \psi(P)\psi(Q)$.

Thus we have defined the multiplicative function ψ on homogeneous polynomials. We can extend it by linearity and distributivity to a linear multiplicative functional on the algebra of all continuous polynomials $P(X)$. If ψ_n is the restriction of ψ to $P(nX)$, then $\|\psi_n\| = \|w\|^{n/m}$ if n/m is a positive integer and $\|\psi_n\| = 0$ otherwise. Hence $\psi_n = \sum_{n=0}^{\infty} \psi_n$ is a continuous linear multiplicative functional on $H_b(X)$ by [3] 2.4. Theorem and the radius function of ψ can be computed by
\[
R(\psi) = \limsup_{n \to \infty} \|\psi_n\|^{1/n} = \limsup_{n \to \infty} \|w\|^{n/m} = \|w\|^{1/m} = \|\phi_m\|^{1/m}
\]
as required. \hfill \Box

For each fixed $x \in X$, the translation operator T_x is defined on $H_b(X)$ by
\[
(T_xf)(y) = f(y + x), \quad f \in H_b(X).
\]
It is not complicated to check that $T_x f \in H_b(X)$ and for fixed $\phi \in H_b(X)'$ the function $x \mapsto \phi(T_x f)$, $x \in X$, belongs to $H_b(X)$ (see [3]).

For fixed $\phi, \theta \in H_b(X)'$ the convolution product $\phi \ast \theta$ in $H_b(X)$ is defined by
\[
(\phi \ast \theta)(f) = \phi(\theta(T_x f)), \quad f \in H_b(X).
\]

Let $\phi, \theta \in M_b$. According to [3] 4.7. Corollary, there exist nets (x_{α}), $(y_{\beta}) \subset X$ such that
\[
(2) \quad \phi(P) = \lim_{\alpha} P(x_{\alpha}), \quad \theta(P) = \lim_{\beta} P(y_{\beta})
\]
for every polynomial P. We will write the condition (2) by $x_{\alpha} \xrightarrow{\mathcal{E}} \phi$ and $y_{\beta} \xrightarrow{\mathcal{E}} \theta$. Thus for every polynomial P we have: $(\phi \ast \theta)(P) = \lim_{\beta} \lim_{\alpha} P(x_{\alpha} + y_{\beta})$. Note that M_b is a semigroup with respect to the convolution product and $\phi \ast \theta \neq \theta \ast \phi$ in general (see [3] Remark 3.5). We denote $\phi_1 \ast \cdots \ast \phi_n$ briefly by $\phi_n \ast \cdots \ast \phi_1$.

Let I_k be the minimal closed ideal in $H_b(X)$, generated by all m-homogeneous polynomials, $0 < m \leq k$. Evidently, I_k is a proper ideal (contains no unit) so it is contained in a closed maximal ideal (see [21] p. 228). Let
\[
\Phi_k := \{ \phi \in M_b : \ker \phi \supset I_k \}.
\]
We set $\Phi_0 := M_b$. The functional $\delta(0)$, that is, point evaluation at zero, belongs to Φ_k for every $k > 0$.

Corollary 2. If $A_m(X) \neq A_{m-1}(X)$ for some $m > 1$, then there exists $\psi \in \Phi_{m-1}$ such that $\psi \notin \Phi_m$.

Proof. Let $P \in \mathcal{P}(mX)$ and $P \notin A_{m-1}(X)$. Since $A_{m-1}(X)$ is a closed subspace of $H_b(X)$, by the Hahn-Banach Theorem there exists a linear functional $\phi \in H_b(X)'$ such that $\phi(Q) = 0$ for every $Q \in A_{m-1}(X)$ and $\phi(P) \neq 0$. So $\phi_k \equiv 0$ for $k < m$ and $\phi_m(P) \neq 0$. By Lemma 4 there exists $\psi \in M_b$ such that $\psi_k = \phi_k$ for $k = 1, \ldots, m$. Thus $\psi \in \Phi_{m-1}$, but $\psi \notin \Phi_m$. □

Note that $A_1(c_0) = A_n(c_0)$ for every n, but $A_k(\ell_p) = A_m(\ell_p)$ for $k \neq m$ if and only if $k < p$ and $m < p$. Moreover, if X admits a polynomial which is not weakly sequentially continuous, then the chain of algebras $\{A_k(X)\}$ does not stabilize and if X contains ℓ_1, then $A_k(X) \neq A_m(X)$ for $k \neq m$ [19] [12].

Lemma 3. If $\phi, \psi \in M_b$ and $\psi \in \Phi_{k-1}$, then $\phi \ast \psi(P) = \phi(P) + \psi(P)$ for every $P \in \mathcal{P}(kX)$.

Proof. Given x_α and y_β be nets in X such that $x_\alpha \overset{\mathcal{E}_\beta}{\to} \phi$ and $y_\beta \overset{\mathcal{E}_\alpha}{\to} \psi$. For any fixed y_β and $0 < n < k$, $A_P(x_{k-n}^n, y_\beta^m)$ is a $(k - n)$-homogeneous polynomial. Thus

$$\phi(A_P(x_{k-n}^n, y_\beta^m)) = \lim_{\alpha} A_P(x_\alpha, y_\beta^n) = 0.$$

Therefore,

$$\phi \ast \psi(P) = \lim_{\beta, \alpha} P(x_\alpha + y_\beta) = \sum_{n+m=k} \lim_{\beta, \alpha} A_P(x_\alpha^n, y_\beta^m) = \sum_{n+m=k} \lim_{\beta, \alpha} A_P(x_\alpha^n, y_\beta^m) = \phi(P) + \psi(P).$$

□

Lemma 4. If $P \in \mathcal{P}(kX)$, $\phi_j \in \Phi_{j-1}$, then for every $m > k$, $\sum_{j=1}^{m} \phi_j(P) = \sum_{j=1}^{k} \phi_j(P)$.

Proof. Since $\phi_j \in \Phi_{j-1}$, $\phi_j(P) = 0$ for every $j > k$. □

Given a sequence $(\phi_n)_{n=1}^{\infty} \subset M_b$, $\phi_n \in \Phi_{n-1}$, the infinite convolution $\star \phi_n$ denotes a linear multiplicative functional on the algebra of all polynomials $\mathcal{P}(X)$ such that $\star \phi_n(P) = \star (P)$ if $P \in \mathcal{P}(kX)$ for an arbitrary k. This multiplicative functional uniquely determines a functional in M_b (which we denote by the same symbol $\star \phi_n$) if it is continuous.

The point evaluation operator δ maps X into M_b by $x \mapsto \delta(x)$, $\delta(x)(f) = f(x)$. The operator $\tilde{\delta}$ is the extension of δ onto X'', i.e. $\tilde{\delta}(x'')(f) = \tilde{f}(x'')$ for every $x'' \in X''$.

Theorem 5. There exists a sequence of dual Banach spaces $(E_n)_{n=1}^{\infty}$ and a sequence of maps $\delta^{(n)}: E_n \to M_b$ such that $E_1 = X''$, $E_n = \mathcal{P}(nX)' \cap I_{n-1}$, $\delta^{(1)} = \delta$ and such that an arbitrary complex homomorphism $\phi \in M_b$ has a representation

$$\phi = \lim_{n=1}^{\infty} \delta^{(n)}(u_n)$$

for some $u_n \in E_n$, $n = 1, 2, \ldots$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Put $E_1 = X''$. Then $\delta(1_X) = \delta(x'') \in M_b$ for every $x'' \in X''$. Suppose that spaces E_k and maps $\delta(k)$ are constructed for $k < n$. Denote by E_n the set
\{\pi_n(\phi) : \phi \in \Phi_{n-1}\},
where $\pi_n(\phi)$ is the restriction of ϕ onto the subspace $P_n(X)$. In other words, E_n consists of linear continuous functionals on $P_n(X)$ that vanish on all polynomials in $P_n(X) \cap A_{n-1}$. If $A_n = A_{n-1}$, then $E_n = 0$. Otherwise, by Corollary \ref{corollary_exist}, there are nonzero points in E_n.

By Lemma \ref{Lemma3} for $P \in P_n(X)$ and $\phi, \psi \in \Phi_{n-1} \subset M_b$, $\pi_n(\phi \psi)(P) = \phi(\psi(P)) + \psi(\phi(P)) = \pi_n(\phi(P)) + \pi_n(\psi(P))$. Hence $\pi_n(\phi) = \pi_n(\phi) + \pi_n(\psi)$. For an arbitrary complex number a, $a\phi \in H_b(X)$ and $\pi_k(a\phi) = a\pi_k(\phi)$. So $a\phi$ vanishes on all homogeneous polynomials of degree less than n. By Lemma \ref{Lemma4} there exists $\psi \in M_b$ such that $\psi_k = a\psi_k$ for $1 \leq k \leq n$. Thus $\psi \in \Phi_{n-1}$ and $a\phi_n = \psi_n \in E_n$. Hence E_n is a linear space and polynomials from $P_n(X)$ are acting on E_n as linear functionals.

Put $W_n = P_n(X)/(I_{n-1} \cap P_n(X))$. Then W_n is a Banach space of linear functionals on E_n and the functionals from W_n separate points of E_n. Let us define a norm on E_n, $|| \cdot ||_n$ as the supremum of values of a vector from E_n on the unit ball of W_n. Therefore $W_n' = (P_n(X)/(I_{n-1} \cap P_n(X)))' = P_n(X)' \cap I_{n-1}' \supset E_n'$. On the other hand, if $u \in P_n(X)' \cap I_{n-1}'$, then by Lemma \ref{Lemma1} $u = \pi_n(\phi)$ for some $\phi \in M_b$ and so $u \in E_n$. Thus $E_n = W_n$.

For given $w \in E_n$ let us define $\delta(n)(w)(Q) = \psi(Q)$ on homogeneous polynomials Q by formula (4) and extend it to the unique complex homomorphism on $H_b(X)$ as in Lemma \ref{Lemma1}. So $\delta(n)$ maps E_n into M_b. For any $\phi \in M_b$ put $u_1 := \phi_1 \in X'' = E_1$, $u_2 := \phi_2 - \pi_2(\delta(1)(u_1))$. It is clear that $u_2 \in E_2$. Suppose that we have defined $u_k \in E_k$, $k < n$. Set
\begin{equation} u_n := \phi_n - \pi_n \left(\delta(k)(u_k) \right). \end{equation}

Let us show that $u_n \in E_n$. It is enough to check that for every $P \in P_n(X)$ such that $P = P_kP_m$, $\deg P_k = k \neq 0$, $\deg P_m = n \neq 0$ implies $u_n(P) = 0$. Note that for all n-homogeneous polynomials P_n,
\begin{equation} \phi_n - \pi_n \left(\delta(k)(u_k) \right)(P_n) = \phi_n - n^{-1}\delta(k)(u_k)(P_n). \end{equation}

From the multiplicativity of ϕ and Lemma \ref{Lemma1} it follows that
\begin{align*}
\phi_n(P_kP_m) - \pi_n \delta(j)(u_j)(P_kP_m) &= \phi_k(P_k)\phi_m(P_m) \\
&\quad - \left(\delta(k)(u_k)(P_k) \right) \left(\delta(k)(u_k)(P_m) \right) \\
&\quad - \left(\delta(j)(u_j)(P_k) \right) \left(\delta(j)(u_j)(P_m) \right) \\
&\quad - \left(\delta(j)(u_j)(P_k) \right) \left(\delta(j)(u_j)(P_m) \right) = 0.
\end{align*}

The last equality holds because by the induction assumption, $u_k \in E_k$, $u_m \in E_m$ and hence, by Lemma \ref{Lemma3},
\begin{equation} u_k(P_k) + \delta(j)(u_j)(P_k) = \delta(j)(u_j)(P_k) \end{equation}
Proposition 7. Let \(u_k \in E_k \), by Lemma 3

\[
\phi \left(\sum_{j=1}^{m} \delta(j)(u_j)(f_n) \right) = f(0) + \sum_{n=1}^{\infty} \left(\sum_{j=1}^{n} \delta(j)(u_j)(f_n) \right),
\]

where \(f = \sum f_n \) is the Taylor series expansion of \(f \). Hence \(\phi \) is well defined on \(\mathcal{P}(X) \). On the other hand, applying (4) and (5) we obtain

\[
\phi(u_n(P)) = \phi_n(P) - \sum_{j=1}^{n} \delta(j)(u_j)(P_n) = u_n(P) + \sum_{j=1}^{n} \delta(j)(u_j)(P_n) = 0
\]

for arbitrary \(P_n \in \mathcal{P}(^nX) \). Thus \(\phi = \sum_{j=1}^{\infty} \delta(j)(u_j) \) on \(\mathcal{P}(X) \). Hence \(\phi = \sum_{j=1}^{\infty} \delta(j)(u_j) \) on \(H_b(X) \).

Let us denote by \(E^\infty \) the space of all finite sequences \((u_1, \ldots, u_m, 0, \ldots) \), \(u_k \in E_k \). According to Theorem 5 every finite sequence \(u = (u_1, \ldots, u_m, 0, \ldots) \) defines a character \(\phi_u = \sum_{k=1}^{m} \delta(k)(u_k) \in M_b \). Thus \(E^\infty \subset M_b \) and for every \(u, v \in E^\infty \), \(\phi_{u+v} \in M_b \). Moreover, from the density of polynomials in \(H_b(X) \) it follows that \(E^\infty \) is dense in \(M_b \) with respect to the Gelfand topology. So we have proved the following theorem.

Theorem 6. \(M_b \) contains the dense linear subspace of all finite subsequences \((u_1, \ldots, u_m, 0, \ldots) \), \(u_k \in E^k \).

According to [3], [7], the operation of sum on \(X \) may be discontinuous with respect to the Gelfand topology, induced from \(M_b \). Hence, in general, \(E^\infty \) is not a topological vector space. Thus, the density of \(E^\infty \) in \(M_b \) does not imply that \(M_b \) is a linear space.

We need to have some properties of the radius function, proved by Aron, Cole and Gamelin in [3].

Proposition 7.

1. For each \(r > 0 \), the set of \(\phi \in M_b \) satisfying \(R(\phi) \leq r \) coincides with the spectrum of \(H^{\infty}_{uc}(rB) \). In particular, \(M_{uc} = \{ \phi \in M_b : R(\phi) \leq 1 \} \).
2. For every \(\phi, \psi \in H_b(x)' \), \(R(\phi \ast \psi) \leq R(\phi) + R(\psi) \).

Example 8. 1. Let \(X = c_0 \) or Tsirelson’s space. Then \(E_k = \{0\} \) for \(k > 1 \) [4, 22].
2. Let \(X = \ell_1 \) and \(\phi \in H_b(\ell_1)' \), \(||\phi|| = 1 \). According to [3], \(\phi \in M_b(\ell_1) \) if and only if for every \(m = 1, 2, \ldots \) there exists a symmetric measure on \(\beta(\mathbb{N}^m) \), \(\nu_m \) and a constant \(c > 0 \) such that \(||\nu_m|| \leq c^m \) and for each \(P_m \in \mathcal{P}(^m\ell_1) \),

\[
\phi(P_m) = \int_{\beta(\mathbb{N}^m)} \hat{P}_m d\nu_m,
\]
where \(\hat{P}_m \) is just \(P_m \) regarded as a vector from \(\ell^\infty(\mathbb{N}^m) \). By Theorem 5 \(\phi \in M_b(\ell_1) \) if and only if there is a sequence of symmetric measures \((\mu_m)\) which are orthogonal to \(\beta(\mathbb{N}^j) \times \beta(\mathbb{N}^k) \subset \beta(\mathbb{N}^m) \), for \(m > 1, k + j = m, k, j > 0 \), and functionals

\[
u_m(P_m) = \int_{\beta(\mathbb{N}^m)} \hat{P}_m d\mu_m
\]
determine \(\phi \) by formula (3).

3. (Cf. [1] Example 3.1.) Let \(X = \ell_p \) for some integer \(p, 1 < p < \infty \). For every \(n, \) put

\[
v_n = \frac{1}{n^{1/p}} (e_1 + \cdots + e_n),
\]
where \((e_k)\) is the standard basis in \(\ell_p \). Since \(\|v_n\| = 1 \), \(R(\delta(v_n)) = 1 \) and so \(\delta(v_n) \in M_{uc} \subset M_b \). By compactness of \(M_{uc} \) there is an accumulation point \(\phi \in M_{uc} \) of the sequence \((\delta(v_n))\). If \(0 < k < p \), then by Pitt’s Theorem (see [16, Theorem 5.1]) every polynomial \(P \in \mathcal{P}(k\ell_p) \) is weakly continuous on bounded sets. Since \(v_n \) is weakly null in \(\ell_p \), \(\phi(P) = 0 \). On the other hand, \(\phi(Q) = 1 \) for the polynomial

\[
Q(x) = \sum_{n=1}^{\infty} x_n^p.
\]
Thus \(\phi \in \Phi_{p-1} \) and \(\phi \neq 0 \). In other words, if \(\phi = \sum_{k=1}^\infty \delta^{(k)}(u_k) \) is the representation of \(\phi \) by Theorem 5, then \(u_k = 0 \) for \(k < p \) and \(v_p \neq 0 \).

Proposition 9. Let \(\phi \in M_b \) and let \(\phi = \sum_{k=1}^{\infty} \delta^{(k)}(u_k), u_k \in E_k \), be its representation. Then

\[
\limsup_{k \to \infty} \| u_k \|_k^{1/k} \leq R(\phi) \leq \sum_{k=1}^{\infty} \| u_k \|_k^{1/k}.
\]

Proof. The first inequality holds because \(\|u_k\|_k \leq \|\phi_k\| \) and by the definition of the radius function. The second inequality follows from Proposition 7 and the following calculation:

\[
R(\delta^{(k)}(u_k)) = \limsup_{m \to \infty} \| \pi_{km}(\delta^{(k)}(u_k)) \|_1^{1/km} = \| \delta^{(k)}(u_k) \|_m^{1/km} = \| u_k \|_k^{1/k}.
\]

Let \(F \) be an analytic map from \(\ell_1 \) to \(\ell_1 \) defined by

\[
F(x) = F \left(\sum_{n=1}^{\infty} x_n e_n \right) = \sum_{n=1}^{\infty} x_n^n e_n.
\]
We denote by \(F(\ell_1) \) the range of \(F \) and by \(F(B_{\ell_1}) \) the range of \(F \) restricted to the unit ball \(B_{\ell_1} \subset \ell_1 \).

Given a sequence of Banach spaces \((E_n, \| \cdot \|_n)_{n=1}^\infty \) and \(0 < \rho \leq \infty \) the Kôthe sequence space \(\lambda^1(K_\rho; (E_n)) \) (where \(K_\rho = \{ (r^n)_{n=1}^\infty: 0 < r < \rho \} \) is the Fréchet space

\[
\left\{ (x_n)_{n=1}^\infty \in \prod_{n=1}^\infty E_n : p_r((x_n)_{n=1}^\infty) = \sum_{n=1}^\infty \|x_n\| r^n < \infty \forall r, 0 < r < \rho \right\},
\]
endowed with the topology given by the seminorms \(\{ p_r \}_{0 < r < \rho} \). By Cauchy-Hadamard’s formula,

\[
\lambda^1(K_\rho; (E_n)) = \left\{ (x_n)_{n=1}^\infty \in \prod_{n=1}^\infty E_n : \limsup_{n \to \infty} \|x_n\|_n^{1/n} \leq \frac{1}{\rho} \right\}.
\]
Corollary 10. \(1\) \(M_b\) contains every sequence \(u = (u_k)_{k=1}^{\infty}, u_k \in E_k,\) such that the sequence \((||(u_k)||_{k=1}^{\infty})\) is in \(F(\ell_1)\).
\(2\) \(M_{uc}\) contains every sequence \(u = (u_k)_{k=1}^{\infty}, u_k \in E_k,\) such that the sequence \((||(u_k)||_{k=1}^{\infty})\) is in \(F(B_{\ell_1})\).
\(3\) Every complex homomorphism \(\phi \in M_b\) is contained in a Köthe sequence space \(\lambda^1(K_p; (E_n))\) for \(p = 1/R(\phi)\).
\(4\) \(M_{uc}\) is contained in \(\lambda^1(K_1; (E_n))\).

Proof. Since \(F^{-1}((||u_k||)_{k=1}^{\infty}) \in \ell_1, \sum_{k=1}^{\infty} ||u_k||^{1/k} \leq \infty\) and by Proposition \(9\), \(R(\phi_u) < \infty\). Thus \(\phi_u \in M_b\). Moreover, if \(F^{-1}((||u_k||)_{k=1}^{\infty}) \in F(B_{\ell_1})\), then \(R(\phi_u) \leq 1\) and \(\phi_u \in M_{uc}\).

Suppose that \(\phi_u \in M_b\) for some \(u = (u_k)_{k=1}^{\infty}\). Then \(R(\phi_u) < \infty\) and by Proposition \(9\), \(\limsup_{k \to \infty} ||u_k||^{1/k} \leq R(\phi_u)\). Hence \(\phi_u \in \lambda^1(K_1/R(\phi_u); (E_n))\). In particular, if \(R(\phi_u) \leq 1\), then \(\phi_u \in \lambda^1(K_1; (E_n))\). \(\square\)

Dixon \([14]\) has given an example of an algebra of polynomials of infinitely many variables which admits discontinuous scalar-valued homomorphisms. In \([13]\) a construction is given of a discontinuous scalar-valued homomorphism of an algebra of polynomials on an arbitrary infinite-dimensional Banach space. The next corollary shows that the restriction of a discontinuous complex homomorphism on \(A_n(X) \cap \mathcal{P}(X)\) can be continuous for every \(n\). Note that the problem of existence of discontinuous complex homomorphisms on \(H_b(X)\) for an infinite-dimensional Banach space \(X\) is still open and equivalent to the famous Michael Problem \([20, 21, p. 240]\).

Corollary 11. If the sequence of algebras \(A_n(X)\) does not stabilize, then there is a discontinuous complex homomorphism \(\zeta\) on \(\mathcal{P}(X)\) such that the restriction of \(\zeta\) on \(A_n(X) \cap \mathcal{P}(X)\) is a continuous complex homomorphism for every \(n\).

Proof. By Corollary \(2\) and Theorem \(5\) there exists an infinite sequence \((u_k)_{k=1}^{\infty}, u_k \in E_k, u_k \neq 0\). Since each \(E_k\) is a linear space, we can choose \(u_k\) such that \(\limsup_{k \to \infty} ||u_k||^{1/k} = \infty\). Put \(\zeta = \bigoplus_{k=1}^{\infty} \delta^{(k)}(u_k)\). Evidently,
\[\zeta(f) = \bigoplus_{k=1}^{n} \delta^{(k)}(u_k)(f)\]
for every \(f \in A_n(X)\). So \(\zeta\) is well defined and continuous on \(A_n(X) \cap \mathcal{P}(X)\). If \(\zeta\) is continuous on \(\mathcal{P}(X)\), then it can be extended to a continuous complex homomorphism on \(H_b(X)\). But this contradicts Proposition \(4\). \(\square\)

In \([11]\) Deghoul, using Borsuk’s theorem, shows that there is a “exceptional” character \(\phi\) on \(H_b(\ell_2)\) such that \(\phi\) vanishes on odd degree homogeneous polynomials and is different from the evaluation at 0. The next proposition delivers the existence of exceptional characters on \(H_b(X)\) for a large number of \(X\).

Proposition 12. Suppose that \(A_m(X) \neq A_k(X)\) for some \(m > 1\) and all \(k < m\). Then there exists a nontrivial character \(\psi_0 \in M_b\) such that \(\psi_0(P) = 0\) for every homogeneous polynomial \(P, \deg P \neq nm, n = 1, \ldots, \infty\).
Proof. By Corollary 2 there exists a nontrivial character \(\psi \in M_b \) which vanishes on all \(k \)-homogeneous polynomials for \(k < m \). From Theorem 5 it follows that \(E_m \) contains a nonzero vector \(u_m \). Put \(\psi_0 = \delta^{(m)}(u_m) \). Then \(\psi_0 \) vanishes on all homogeneous polynomials excepting \(nm \)-homogeneous polynomials, \(n = 1, 2, \ldots \).

\[\square \]

Acknowledgements

The author is greatly indebted to the referee for his attention to the paper and numerous helpful comments. The author wishes to thank the University of Saskatchewan, where the paper was written, for the invitation and financial support.

References

Institute for Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences, 3 b, Naukova str., Lviv 79060, Ukraine

Current address: Department of Mathematics and Statistics, McLean Hall, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E6

E-mail address: zahorodn@math.usask.ca
E-mail address: andriyzag@yahoo.com