Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The spherical Paley-Wiener theorem on the complex Grassmann manifolds SU$ (p+q)/$S$ ($U$ _p\times$   U$ _q)$

Author: Roberto Camporesi
Journal: Proc. Amer. Math. Soc. 134 (2006), 2649-2659
MSC (2000): Primary 43A85, 43A90; Secondary 33C50, 26A33
Published electronically: March 22, 2006
MathSciNet review: 2213744
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the Paley-Wiener theorem for the spherical transform on the complex Grassmann manifolds $ U/K=$SU$ (p+q)/$S$ ($U$ _p\times$   U$ _q)$. This theorem characterizes the $ K$-biinvariant smooth functions $ f$ on the group $ U$ that are supported in the $ K$-invariant ball of radius $ R$, with $ R$ less than the injectivity radius of $ U/K$, in terms of holomorphic extendability, exponential growth, and Weyl invariance properties of the spherical Fourier transforms $ \hat{f}$, originally defined on the discrete set $ \Lambda_{sph}$ of highest restricted spherical weights.

References [Enhancements On Off] (What's this?)

  • 1. A. Abouelaz, Integral geometry in the sphere $ S^d$, in ``Harmonic analysis and integral geometry'' (Safi, 1998), 83-125, Chapman & Hall/CRC Res. Notes Math., 422, Chapman & Hall/CRC, Boca Raton, FL, 2001. MR 1789147 (2001i:44004)
  • 2. F.A. Berezin and F.I. Karpelevic, Zonal spherical functions and Laplace operators on some symmetric spaces, Dokl. Akad. Nauk. USSR 118 (1958), 9-12. MR 0095216 (20:1722)
  • 3. T. Branson, G. Olafsson and A. Pasquale, The Paley-Wiener theorem and the local Huygens' principle for compact symmetric spaces: the even multiplicity case, to appear in Indag. Math. 16 (2005).
  • 4. R. Gangolli, On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups, Ann. of Math. 93 (1971), 150-165. MR 0289724 (44:6912)
  • 5. G. Gasper, Formulas of the Dirichlet-Mehler type, in ``Fractional Calculus and Its Applications'' (B. Ross, ed.), 207-215, Lecture Notes in Mathematics, vol. 457, Springer-Verlag, New York/Berlin, 1975. MR 0477185 (57:16726)
  • 6. F.B. Gonzalez, A Paley-Wiener theorem for central functions on compact Lie groups, in ``Radon transforms and tomography'' (South Hadley, MA, 2000), 131-136, Contemp. Math. 278, Amer. Math. Soc., Providence, RI, 2001. MR 1851484 (2002f:43005)
  • 7. S. Helgason, ``Differential Geometry and Symmetric Spaces'', Academic Press, New York, 1962. MR 0145455 (26:2986)
  • 8. S. Helgason, An Analogue of the Paley-Wiener theorem for the Fourier transform on certain symmetric spaces, Math. Ann. 165 (1966), 297-308. MR 0223497 (36:6545)
  • 9. S. Helgason, ``Differential Geometry, Lie Groups and Symmetric Spaces'', Academic Press, New York, 1978. MR 0514561 (80k:53081)
  • 10. S. Helgason, ``Groups and Geometric Analysis'', Academic Press, New York, 1984. MR 0754767 (86c:22017)
  • 11. B. Hoogenboom, Spherical functions and differential operators on complex Grassmann manifolds, Ark. Mat. 20 (1982), 69-85. MR 0660126 (83m:43012)
  • 12. T.H. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat. 13 (1975), 145-159. MR 0374832 (51:11028)
  • 13. Ch. Meaney, The inverse Abel transform for $ SU(p,q)$, Ark. Mat. 24 (1986), 131-140. MR 0852831 (87m:22024)
  • 14. M. Riesz, L'integral de Riemann-Liouville et le probleme de Cauchy, Acta Math. 81 (1949), 1-223. MR 0030102 (10:713c)
  • 15. R. Strichartz, Local harmonic analysis on spheres, J. Funct. Anal. 77 (1988), 403-433. MR 0933977 (90f:43014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 43A85, 43A90, 33C50, 26A33

Retrieve articles in all journals with MSC (2000): 43A85, 43A90, 33C50, 26A33

Additional Information

Roberto Camporesi
Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Keywords: Symmetric spaces, representation theory, Paley-Wiener theorems
Received by editor(s): March 31, 2005
Published electronically: March 22, 2006
Communicated by: Dan M. Barbasch
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society