Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Hodge structures for orbifold cohomology

Author: Javier Fernandez
Journal: Proc. Amer. Math. Soc. 134 (2006), 2511-2520
MSC (2000): Primary 14F43, 14C30; Secondary 14J32
Published electronically: February 17, 2006
MathSciNet review: 2213728
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a polarized Hodge structure on the primitive part of Chen and Ruan's orbifold cohomology $ H_{orb}^k(X)$ for projective $ SL$-orbifolds $ X$ satisfying a ``Hard Lefschetz Condition''. Furthermore, the total cohomology $ \bigoplus_{p,q}H_{orb}^{p,q}(X)$ forms a mixed Hodge structure that is polarized by every element of the Kähler cone of $ X$. Using results of Cattani-Kaplan-Schmid this implies the existence of an abstract polarized variation of Hodge structure on the complexified Kähler cone of $ X$.

This construction should be considered as the analogue of the abstract polarized variation of Hodge structure that can be attached to the singular cohomology of a crepant resolution of $ X$, in light of the conjectural correspondence between the (quantum) orbifold cohomology and the (quantum) cohomology of a crepant resolution.

References [Enhancements On Off] (What's this?)

  • 1. W. L. Baily, On the imbedding of $ V$-manifolds in projective space, Amer. J. Math. 79 (1957), 403-430. MR 0100104 (20:6538)
  • 2. E. Cattani and J. Fernandez, Frobenius modules and Hodge asymptotics, Comm. Math. Phys. 238 (2003), no. 3, 489-504. Also, arXiv:math.AG/0207279. MR 1993382 (2004i:32022)
  • 3. E. Cattani and A. Kaplan, Polarized mixed Hodge structures and the local monodromy of a variation of Hodge structure, Invent. Math. 67 (1982), no. 1, 101-115. MR 0664326 (84a:32046)
  • 4. -, Degenerating variations of Hodge structure, Astérisque (1989), no. 179-180, 9, 67-96, Actes du Colloque de Théorie de Hodge (Luminy, 1987). MR 1042802 (91k:32019)
  • 5. E. Cattani, A. Kaplan, and W. Schmid, Degeneration of Hodge structures, Annals of Mathematics 123 (1986), 457-535. MR 0840721 (88a:32029)
  • 6. W. Chen and Y. Ruan, Orbifold Gromov-Witten theory, Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., Providence, RI, 2002, pp. 25-85. Also, arXiv:math.AG/0103156. MR 1950939 (2003g:00020)
  • 7. -, A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004), no. 1, 1-31. Also, arXiv:math.AG/0004129. MR 2104605 (2005j:57036)
  • 8. D. A. Cox and S. Katz, Mirror symmetry and algebraic geometry, American Mathematical Society, Providence, RI, 1999. MR 1677117 (2000d:14048)
  • 9. P. Griffiths (ed.), Topics in transcendental algebraic geometry, Annals of Mathematics Studies, vol. 106, Princeton, NJ, Princeton University Press, 1984. MR 0756842 (86b:14004)
  • 10. M. Poddar, Orbifold hodge numbers of Calabi-Yau hypersurfaces, Pacific J. Math. 208 (2003), no. 1, 151-167. Also, arXiv:math.AG/0107152. MR 1979377 (2004k:32042)
  • 11. Y. Ruan, Cohomology ring of crepant resolutions of orbifolds, arXiv:math.AG/0108195, January 2002.
  • 12. -, Stringy geometry and topology of orbifolds, Symposium in Honor of C. H. Clemens (Salt Lake City, UT, 2000), Contemp. Math., vol. 312, Amer. Math. Soc., Providence, RI, 2002, pp. 187-233. MR 1941583 (2004b:32051)
  • 13. M. Saito, Mixed Hodge modules, Publ. Res. Inst. Math. Sci. 26 (1990), no. 2, 221-333. MR 1047415 (91m:14014)
  • 14. I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 359-363. MR 0079769 (18:144a)
  • 15. W. Schmid, Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973), 211-319. MR 0382272 (52:3157)
  • 16. J. H. M. Steenbrink, Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525-563. MR 0485870 (58:5670)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14F43, 14C30, 14J32

Retrieve articles in all journals with MSC (2000): 14F43, 14C30, 14J32

Additional Information

Javier Fernandez
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112–0090
Address at time of publication: Instituto Balseiro, Univerisdad Nacional de Cuyo – C.N.E.A., Bariloche, Río Negro, R8402AGP, República Argentina

Keywords: Orbifold cohomology, polarized Hodge structure, Lefschetz package
Received by editor(s): May 31, 2004
Received by editor(s) in revised form: March 29, 2005
Published electronically: February 17, 2006
Communicated by: Michael Stillman
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society