A prevalent transversality theorem for Lipschitz functions

Author:
Chris Shannon

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2755-2765

MSC (2000):
Primary 58C05, 49J52, 90C31; Secondary 58E17

Published electronically:
April 13, 2006

MathSciNet review:
2213756

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper provides a version of the transversality theorem for a class of Lipschitz functions of the form , where is a convex subset of a normed vector space indexing the parameters in the problem. The set may be infinite-dimensional, and the notion of generic used is the measure-theoretic notion of prevalence introduced by Hunt, Sauer and Yorke (1992) and Christensen (1974). This paper also provides some results on sensitivity analysis for solutions to locally Lipschitz equations.

**[1]**Robert M. Anderson and William R. Zame,*Genericity with infinitely many parameters*, Adv. Theor. Econ.**1**(2001), Art. 1, 64 pp. (electronic). MR**2002579**, 10.2202/1534-5963.1003**[2]**Jean-Pierre Aubin,*Lipschitz behavior of solutions to convex minimization problems*, Math. Oper. Res.**9**(1984), no. 1, 87–111. MR**736641**, 10.1287/moor.9.1.87**[3]**J. P. R. Christensen,*Topology and Borel structure*, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974. Descriptive topology and set theory with applications to functional analysis and measure theory; North-Holland Mathematics Studies, Vol. 10. (Notas de Matemática, No. 51). MR**0348724****[4]**Frank H. Clarke,*Optimization and nonsmooth analysis*, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR**709590****[5]**F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski,*Nonsmooth analysis and control theory*, Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998. MR**1488695****[6]**Gerard Debreu,*Economies with a finite set of equilibria*, Econometrica**38**(1970), 387–392. MR**0278702****[7]**Claude Dellacherie and Paul-André Meyer,*Probabilities and potential*, North-Holland Mathematics Studies, vol. 29, North-Holland Publishing Co., Amsterdam-New York; North-Holland Publishing Co., Amsterdam-New York, 1978. MR**521810****[8]**M. K. Fort Jr.,*Essential and non essential fixed points*, Amer. J. Math.**72**(1950), 315–322. MR**0034573****[9]**Brian R. Hunt, Tim Sauer, and James A. Yorke,*Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces*, Bull. Amer. Math. Soc. (N.S.)**27**(1992), no. 2, 217–238. MR**1161274**, 10.1090/S0273-0979-1992-00328-2**[10]**Alan J. King and R. Tyrrell Rockafellar,*Sensitivity analysis for nonsmooth generalized equations*, Math. Programming**55**(1992), no. 2, Ser. A, 193–212. MR**1167597**, 10.1007/BF01581199**[11]**Trout Rader,*Nice demand functions*, Econometrica**41**(1973), 913–935. MR**0441276****[12]**R. T. Rockafellar,*Proto-differentiability of set-valued mappings and its applications in optimization*, Ann. Inst. H. Poincaré Anal. Non Linéaire**6**(1989), no. suppl., 449–482. Analyse non linéaire (Perpignan, 1987). MR**1019126****[13]**R. T. Rockafellar,*First- and second-order epi-differentiability in nonlinear programming*, Trans. Amer. Math. Soc.**307**(1988), no. 1, 75–108. MR**936806**, 10.1090/S0002-9947-1988-0936806-9**[14]**R. Tyrrell Rockafellar and Roger J.-B. Wets,*Variational analysis*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR**1491362****[15]**Chris Shannon,*Regular nonsmooth equations*, J. Math. Econom.**23**(1994), no. 2, 147–165. MR**1266510**, 10.1016/0304-4068(94)90003-5**[16]**Chris Shannon,*Determinacy of competitive equilibria in economies with many commodities*, Econom. Theory**14**(1999), no. 1, 29–87. MR**1707170**, 10.1007/s001990050282**[17]**Shannon, C. (2002), ``Inada Conditions and the Determinacy of Equilibria,'' preprint, October 2002.**[18]**Chris Shannon and William R. Zame,*Quadratic concavity and determinacy of equilibrium*, Econometrica**70**(2002), no. 2, 631–662. MR**1913825**, 10.1111/1468-0262.00298**[19]**Maxwell B. Stinchcombe,*The gap between probability and prevalence: loneliness in vector spaces*, Proc. Amer. Math. Soc.**129**(2001), no. 2, 451–457. MR**1694881**, 10.1090/S0002-9939-00-05543-X

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
58C05,
49J52,
90C31,
58E17

Retrieve articles in all journals with MSC (2000): 58C05, 49J52, 90C31, 58E17

Additional Information

**Chris Shannon**

Affiliation:
Department of Economics and Department of Mathematics, University of California–Berkeley, Berkeley, California 94720

Email:
cshannon@econ.berkeley.edu

DOI:
http://dx.doi.org/10.1090/S0002-9939-06-08607-2

Keywords:
Prevalence,
transversality,
Lipschitz functions,
nonsmooth analysis

Received by editor(s):
April 25, 2003

Published electronically:
April 13, 2006

Additional Notes:
Thanks to Bob Anderson, Don Brown, Max Stinchcombe and Bill Zame for helpful comments and conversations concerning this paper. The financial support of the National Science Foundation under grant SBR 98-18759, the Miller Institute, and an Alfred P. Sloan Foundation Research Fellowship is gratefully acknowledged.

Communicated by:
Jonathan M. Borwein

Article copyright:
© Copyright 2006
American Mathematical Society