A remark on the existence of suitable vector fields related to the dynamics of scalar semi-linear parabolic equations

Authors:
Fengbo Hang and Huiqiang Jiang

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2633-2637

MSC (2000):
Primary 35K20; Secondary 35B40, 54F65

DOI:
https://doi.org/10.1090/S0002-9939-06-08627-8

Published electronically:
April 7, 2006

MathSciNet review:
2213742

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1992, P. Polácik showed that one could linearly imbed any vector field into a scalar semi-linear parabolic equation on with Neumann boundary condition provided that there exists a smooth vector field on such that

**[A]**H. Amann. Existence and regularity for semilinear parabolic evolution equations.*Scuola Morm. Sup. Pisa Cl. Sci.***11**(4):593-696, 1984. MR**0808425 (87h:34088)****[B]**G. E. Bredon. Topology and geometry. Graduate Texts in Mathematics, 139. Springer-Verlag, New York, 1997. MR**1700700 (2000b:55001)****[DP]**E. N. Dancer and P. Polácik. Realization of vector fields and dynamics of spatially homogeneous parabolic equations.*Mem. AMS***140**(668), 1999. MR**1618487 (99m:35125)****[H]**D. Henry. Geometric theory of semilinear parabolic equations. Lecture notes in mathematics, Vol. 840, Springer-Verlag, New York, 1983. MR**0610244 (83j:35084)****[M]**J. W. Milnor. Topology from the differentiable viewpoint. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, 1997. MR**1487640 (98h:57051)****[P1]**P. Polácik. Complicated dynamics in scalar semilinear parabolic equations in higher space dimension.*Journal of Differential Equations***89**(2):244-271, 1991. MR**1091478 (92c:35063)****[P2]**P. Polácik. Imbedding of any vector field in a scalar semilinear parabolic equation.*Proc. AMS.***115**(4):1001-1008, 1992. MR**1089411 (92j:35099)****[P3]**P. Polácik. High-dimensional -limit sets and chaos in scalar parabolic equations.*J. Differential Equations***119**(1):24-53, 1995. MR**1334487 (96h:35092)****[P4]**P. Polácik. Reaction-diffusion equations and realization of gradient vector fields. In*International Conference on Differential Equations (Lisboa, 1995),*197-206. World Scientific Publishing, River Edge, NJ, 1998. MR**1639355 (99j:35109)****[P5]**P. Polácik. Parabolic equations: asymptotic behavior and dynamics on invariant manifolds.*Handbook on Dynamical Systems vol. 2*: 835-883, B. Fiedler (ed.), Elsevier, Amsterdam, 2002. MR**1901067 (2003f:37150)****[PR]**P. Polácik and K. P. Rybakowski. Imbedding vector fields in scalar parabolic Dirichlet BVPs.*Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)***22**(4):737-749, 1995. MR**1375317 (97a:35124)****[Pr]**M. Prizzi. Perturbation of elliptic operators and complex dynamics of parabolic partial differential equations.*Proc. Roy. Soc. Edinburgh Sect. A***130**(2):397-418, 2000. MR**1750838 (2001e:35096)****[PrR1]**M. Prizzi and K. P. Rybakowski. Some recent results on chaotic dynamics of parabolic equations. In*Proceedings of the Conference ``Topological Methods in Differential Equations and Dynamical Systems'' (Kraków-Przegorzaly, 1996)*, no. 36, 231-235, 1998. MR**1661351****[PrR2]**M. Prizzi and K. P. Rybakowski. Inverse problems and chaotic dynamics of parabolic equations on arbitrary spatial domains.*J. Differential Equations***142**(1):17-53, 1998. MR**1492876 (98k:35207)****[PrR3]**M. Prizzi and K. P. Rybakowski. Complicated dynamics of parabolic equations with simple gradient dependence.*Trans. Amer. Math. Soc.***350**(8):3119-3130, 1998. MR**1491875 (99a:35125)****[R]**K. P. Rybakowski. The center manifold technique and complex dynamics of parabolic equations. In*Topological methods in differential equations and inclusions (Montreal, PQ, 1994)*, Volume 472 of*NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.*411-446. Kluwer Acad. Publ., Dordrecht, 1995. MR**1368677 (97b:35095)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
35K20,
35B40,
54F65

Retrieve articles in all journals with MSC (2000): 35K20, 35B40, 54F65

Additional Information

**Fengbo Hang**

Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

Email:
fhang@math.msu.edu

**Huiqiang Jiang**

Affiliation:
School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, Minnesota 55455

Email:
hqjiang@math.umn.edu

DOI:
https://doi.org/10.1090/S0002-9939-06-08627-8

Received by editor(s):
March 25, 2005

Published electronically:
April 7, 2006

Additional Notes:
The research of the first author was supported in part by NSF Grant DMS-0209504.

Communicated by:
David S. Tartakoff

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.