On positive periodic solutions of LotkaVolterra competition systems with deviating arguments
Authors:
Xianhua Tang and Xingfu Zou
Journal:
Proc. Amer. Math. Soc. 134 (2006), 29672974
MSC (2000):
Primary 34K13; Secondary 34K20, 92D25
Published electronically:
May 9, 2006
MathSciNet review:
2231621
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: By using Krasnoselskii's fixed point theorem, we prove that the following periodic species LotkaVolterra competition system with multiple deviating arguments has at least one positive periodic solution provided that the corresponding system of linear equations has a positive solution, where and are periodic functions with Furthermore, when and , , are constants but , remain periodic, we show that the condition on is also necessary for to have at least one positive periodic solution.
 [1]
Carlos
Alvarez and Alan
C. Lazer, An application of topological degree to the periodic
competing species problem, J. Austral. Math. Soc. Ser. B
28 (1986), no. 2, 202–219. MR 862570
(87k:34062), http://dx.doi.org/10.1017/S0334270000005300
 [2]
Shair
Ahmad, On the nonautonomous VolterraLotka
competition equations, Proc. Amer. Math.
Soc. 117 (1993), no. 1, 199–204. MR 1143013
(93c:34109), http://dx.doi.org/10.1090/S00029939199311430133
 [3]
Anna
Battauz and Fabio
Zanolin, Coexistence states for periodic competitive Kolmogorov
systems, J. Math. Anal. Appl. 219 (1998), no. 2,
179–199. MR 1606377
(98m:34086), http://dx.doi.org/10.1006/jmaa.1997.5726
 [4]
Yuming
Chen and Zhan
Zhou, Stable periodic solution of a discrete periodic
LotkaVolterra competition system, J. Math. Anal. Appl.
277 (2003), no. 1, 358–366. MR 1954481
(2004k:39032), http://dx.doi.org/10.1016/S0022247X(02)00611X
 [5]
J.
M. Cushing, Two species competition in a periodic environment,
J. Math. Biol. 10 (1980), no. 4, 385–400. MR 602256
(82c:92017), http://dx.doi.org/10.1007/BF00276097
 [6]
Meng
Fan and Ke
Wang, Global periodic solutions of a generalized 𝑛species
GilpinAyala competition model, Comput. Math. Appl.
40 (2000), no. 1011, 1141–1151. MR 1784658
(2001i:92043), http://dx.doi.org/10.1016/S08981221(00)002285
 [7]
Meng
Fan, Ke
Wang, and Daqing
Jiang, Existence and global attractivity of positive periodic
solutions of periodic 𝑛species LotkaVolterra competition systems
with several deviating arguments, Math. Biosci. 160
(1999), no. 1, 47–61. MR 1704338
(2000f:92016), http://dx.doi.org/10.1016/S00255564(99)00022X
 [8]
H.
I. Freedman and Paul
Waltman, Persistence in a model of three competitive
populations, Math. Biosci. 73 (1985), no. 1,
89–101. MR
779763 (86i:92038), http://dx.doi.org/10.1016/00255564(85)900781
 [9]
K. Gopalsamy, Global asymptotical stability in a periodic LotkaVolterra system, J. Austral. Math. Soc. Ser. B 24(1982), 160.
 [10]
K. Gopalsamy, Global asymptotical stability in a periodic LotkaVolterra system, J. Austral. Math. Soc. Ser. B 29(1985), 6672.
 [11]
K.
Gopalsamy, Stability and oscillations in delay differential
equations of population dynamics, Mathematics and its Applications,
vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1163190
(93c:34150)
 [12]
I.
Győri and G.
Ladas, Oscillation theory of delay differential equations,
Oxford Mathematical Monographs, The Clarendon Press Oxford University
Press, New York, 1991. With applications; Oxford Science Publications. MR 1168471
(93m:34109)
 [13]
M.
A. Krasnosel′skiĭ, Positive solutions of operator
equations, Translated from the Russian by Richard E. Flaherty; edited
by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964. MR 0181881
(31 #6107)
 [14]
Philip
Korman, Some new results on the periodic competition model, J.
Math. Anal. Appl. 171 (1992), no. 1, 131–138.
MR
1192498 (93j:92033), http://dx.doi.org/10.1016/0022247X(92)90381M
 [15]
Yang
Kuang, Delay differential equations with applications in population
dynamics, Mathematics in Science and Engineering, vol. 191,
Academic Press Inc., Boston, MA, 1993. MR 1218880
(94f:34001)
 [16]
Yongkun
Li, Periodic solutions of 𝑁species competition system with
time delays, J. Biomath. 12 (1997), no. 1,
1–7. MR
1460907 (99f:92021)
 [17]
Yongkun
Li, On a periodic delay logistic type population model, Ann.
Differential Equations 14 (1998), no. 1, 29–36.
MR
1633664 (99d:34133)
 [18]
Yongkun
Li, Periodic solutions for delay LotkaVolterra competition
systems, J. Math. Anal. Appl. 246 (2000), no. 1,
230–244. MR 1761160
(2001b:34132), http://dx.doi.org/10.1006/jmaa.2000.6784
 [19]
Yongkun
Li and Yang
Kuang, Periodic solutions of periodic delay LotkaVolterra
equations and systems, J. Math. Anal. Appl. 255
(2001), no. 1, 260–280. MR 1813821
(2001k:34133), http://dx.doi.org/10.1006/jmaa.2000.7248
 [20]
H.
L. Royden, Real analysis, 3rd ed., Macmillan Publishing
Company, New York, 1988. MR 1013117
(90g:00004)
 [21]
Akira
Shibata and Nobuhiko
Saitô, Time delays and chaos in two competing species,
Math. Biosci. 51 (1980), no. 34, 199–211. MR 587228
(81m:92054), http://dx.doi.org/10.1016/00255564(80)900991
 [22]
Hal
L. Smith, Periodic solutions of periodic competitive and
cooperative systems, SIAM J. Math. Anal. 17 (1986),
no. 6, 1289–1318. MR 860914
(87m:34057), http://dx.doi.org/10.1137/0517091
 [23]
Hal
L. Smith, Periodic competitive differential equations and the
discrete dynamics of competitive maps, J. Differential Equations
64 (1986), no. 2, 165–194. MR 851910
(87k:92027), http://dx.doi.org/10.1016/00220396(86)900860
 [24]
Antonio
Tineo and Carlos
Alvarez, A different consideration about the globally
asymptotically stable solution of the periodic 𝑛competing species
problem, J. Math. Anal. Appl. 159 (1991), no. 1,
44–50. MR
1119420 (93d:34080), http://dx.doi.org/10.1016/0022247X(91)90220T
 [25]
X.
H. Tang and Xingfu
Zou, 3/2type criteria for global attractivity of LotkaVolterra
competition system without instantaneous negative feedbacks, J.
Differential Equations 186 (2002), no. 2,
420–439. MR 1942216
(2003k:34138), http://dx.doi.org/10.1016/S00220396(02)000116
 [26]
X.
H. Tang and Xingfu
Zou, Global attractivity of nonautonomous LotkaVolterra
competition system without instantaneous negative feedback, J.
Differential Equations 192 (2003), no. 2,
502–535. MR 1990850
(2004e:34116), http://dx.doi.org/10.1016/S00220396(03)000421
 [1]
 C. Alvarez, A. C. Lazer, An application of topological degree to the periodic competiting species model, J. Austral. Math. Soc. Ser. B 28(1986), 202219. MR 0862570 (87k:34062)
 [2]
 S. Ahmad, On the nonautonomous LotkaVolterra competition equations, Proc. Amer. Math. Soc. 117(1993), 199204. MR 1143013 (93c:34109)
 [3]
 A. Battaaz, F. Zanolin, Coexistence states for periodic competition Kolmogorov systems, J. Math. Anal. Appl. 219(1998), 179199. MR 1606377 (98m:34086)
 [4]
 Y. Chen, Z. Zhou, Stable periodic solution of a discrete periodic LotkaVolterra competition system, J. Math. Anal. Appl. 277(2003), 358366. MR 1954481 (2004k:39032)
 [5]
 J. M. Cushing, Two species competition in a periodic environment, J. Math. Biol. 10(1980), 385400. MR 0602256 (82c:92017)
 [6]
 M. Fan, K. Wang, Global Periodic Solutions of a Generalized Species GilpinAyala Competition Model, Computers Math. Applic. 40(2000), 11411151. MR 1784658 (2001i:92043)
 [7]
 M. Fan, K. Wang, D. Q. Jiang, Existence and global attractivity of positive periodic solutions of periodic species LotkaVolterra competition systems with several deviating arguments,
Math. Biosci. 160(1999), 4761. MR 1704338 (2000f:92016)
 [8]
 H. I. Freedman, P. Waltman, Persistence in a model of three competitive populations, Math. Biosci. 73(1985), 89101. MR 0779763 (86i:92038)
 [9]
 K. Gopalsamy, Global asymptotical stability in a periodic LotkaVolterra system, J. Austral. Math. Soc. Ser. B 24(1982), 160.
 [10]
 K. Gopalsamy, Global asymptotical stability in a periodic LotkaVolterra system, J. Austral. Math. Soc. Ser. B 29(1985), 6672.
 [11]
 K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, Dordrecht, 1992. MR 1163190 (93c:34150)
 [12]
 I. Györy, G. Ladas, Oscillation Theory of Delay Differential Equations, Oxford Science, Oxford, 1991. MR 1168471 (93m:34109)
 [13]
 M. A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964. MR 0181881 (31:6107)
 [14]
 P. Korman, Some new results on the periodic competition model, J. Math. Anal. Appl. 171(1992), 131138. MR 1192498 (93j:92033)
 [15]
 Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993. MR 1218880 (94f:34001)
 [16]
 Y. K. Li, Periodic solutions of species competition system with delays, J. Biomath. 12(1997), 112. MR 1460907 (99f:92021)
 [17]
 Y. K. Li, On a periodic delay logistic type population model, Ann. of Diff. Eqs. 14(1998), 2936. MR 1633664 (99d:34133)
 [18]
 Y. K. Li, Periodic solutions for delay LotkaVolterra competition systems, J. Math. Anal. Appl. 246(2000), 230244. MR 1761160 (2001b:34132)
 [19]
 Y. K. Li, Y. Kuang, Periodic solutions of periodic delay LotkaVolterra equations and systems, J. Math. Anal. Appl. 255(2001), 260280. MR 1813821 (2001k:34133)
 [20]
 H. L. Roydin, Real Analysis,
Macmillan Publishing Company, New York, 1988.MR 1013117 (90g:00004)
 [21]
 A. Shibata, N. Saito, Time delays and chaos in two competition system, Math. Biosci. 51(1980), 199211. MR 0587228 (81m:92054)
 [22]
 H. L. Smith, Periodic solutions of periodic competitive and cooperative systems, SIAM J. Math. Anal. 17(1986), 12891318. MR 0860914 (87m:34057)
 [23]
 H. L. Smith, Periodic competitive differential and the descrete dynamics of a competitive map, J. Different. Eq. 64(1986), 165194. MR 0851910 (87k:92027)
 [24]
 A. Trieo, C. Alrarez, A different consideration about the globally asymptotically stable solution of the periodic competing species problem, J. Math. Anal. Appl. 159(1991), 4450. MR 1119420 (93d:34080)
 [25]
 X. H. Tang and X. Zou, 3/2type criteria for global attractivity of LotkaVolterra competition system without instantaneous negative feedback, J. Differential Equations, 186(2002), 420439. MR 1942216 (2003k:34138)
 [26]
 X. H. Tang and X. Zou, Global attractivity of nonautonomous LotkaVolterra competition system without instantaneous negative feedbacks, J. Differential Equations, 192(2003), 502535. MR 1990850 (2004e:34116)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC (2000):
34K13,
34K20,
92D25
Retrieve articles in all journals
with MSC (2000):
34K13,
34K20,
92D25
Additional Information
Xianhua Tang
Affiliation:
School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, People’s Republic of China
Email:
tangxh@mail.csu.edu.cn
Xingfu Zou
Affiliation:
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7
Email:
xzou@uwo.ca
DOI:
http://dx.doi.org/10.1090/S0002993906083201
PII:
S 00029939(06)083201
Keywords:
Positive periodic solution,
LotkaVolterra competition system
Received by editor(s):
August 13, 2004
Received by editor(s) in revised form:
April 29, 2005
Published electronically:
May 9, 2006
Additional Notes:
The first author was supported in part by NNSF of China (No. 10471153), and the second author was supported in part by the NSERC of Canada and by a Faculty of Science Dean’s StartUp Grant at the University of Western Ontario.
Communicated by:
Carmen C. Chicone
Article copyright:
© Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
