ON POSITIVE PERIODIC SOLUTIONS OF LOTKA-VOLterra COMPETITION SYSTEMS WITH DEVIATING ARGUMENTS

XIANHUA TANG AND XINGFU ZOU

(Communicated by Carmen C. Chicone)

Abstract. By using Krasnoselskii’s fixed point theorem, we prove that the following periodic \(n \)-species Lotka-Volterra competition system with multiple deviating arguments

\[
\dot{x}_i(t) = x_i(t) \left[r_i(t) - \sum_{j=1}^{n} a_{ij}(t)x_j(t - \tau_{ij}(t)) \right], \quad i = 1, 2, \ldots, n,
\]

has at least one positive \(\omega \)-periodic solution provided that the corresponding system of linear equations

\[
\sum_{j=1}^{n} \tilde{a}_{ij} x_j = \tilde{r}_i, \quad i = 1, 2, \ldots, n,
\]

has a positive solution, where \(r_i, a_{ij} \in C(\mathbb{R}, [0, \infty)) \) and \(\tau_{ij} \in C(\mathbb{R}, \mathbb{R}) \) are \(\omega \)-periodic functions with \(\tilde{r}_i = \frac{1}{\omega} \int_{0}^{\omega} r_i(s)ds > 0 \); \(\tilde{a}_{ij} = \frac{1}{\omega} \int_{0}^{\omega} a_{ij}(s)ds \geq 0, \quad i, j = 1, 2, \ldots, n \).

Furthermore, when \(a_{ij}(t) \equiv a_{ij} \) and \(\tau_{ij}(t) \equiv \tau_{ij}, \quad i, j = 1, \ldots, n \), are constants but \(r_i(t), \quad i = 1, \ldots, n \), remain \(\omega \)-periodic, we show that the condition on (**) is also necessary for (*) to have at least one positive \(\omega \)-periodic solution.

1. Introduction

In recent years, various delay differential equation models have been proposed in the study of ecological systems, population dynamics and infectious diseases. One of the most celebrated models for dynamics of population is the Lotka-Volterra system. Due to its theoretical and practical significance, the Lotka-Volterra system have been studied extensively [2]–[12], [14]–[19], [21]–[25]. In particular, [4]–[7], [14], [16]–[19], [21]–[23] investigated the existence of periodic solutions of some special cases of the following periodic \(n \)-species Lotka-Volterra competition system with
several deviating arguments:

\[
\dot{x}_i(t) = x_i(t) \left[r_i(t) - \sum_{j=1}^{n} a_{ij}(t) x_j(t - \tau_{ij}(t)) \right], \quad i = 1, 2, \ldots, n,
\]

where \(r_i, a_{ij} \in C(\mathbb{R}, [0, \infty)) \) and \(\tau_{ij} \in C(\mathbb{R}, \mathbb{R}) \) are \(\omega \)-periodic functions \((\omega > 0) \) with

\[
\bar{r}_i = \frac{1}{\omega} \int_0^\omega r_i(s) ds > 0; \quad \bar{a}_{ij} = \frac{1}{\omega} \int_0^\omega a_{ij}(s) ds \geq 0, \quad i, j = 1, 2, \ldots, n.
\]

For example, Shibata and Saito [21] studied a two-species delay Lotka-Volterra competition system and showed that the delays in the system can lead to chaotic behavior. When \(n = 1 \), (1.1) reduces to the following delayed periodic logistic equation:

\[
\dot{x}(t) = x(t) \left[r(t) - a(t) x(t - \tau(t)) \right].
\]

It was shown in Li [17] that Eq. (1.3) always has a positive \(\omega \)-periodic solution if \(r, a, \tau \in C(\mathbb{R}, [0, \infty)) \) are \(\omega \)-periodic functions with \(\int_0^\omega r(s) ds > 0 \) and \(\int_0^\omega a(s) ds > 0 \).

Recently, by using the method of coincidence degree, Fan et al. [7] and Li [18] investigated the existence of periodic solutions of Eq. (1.1) and established the following two results respectively.

Theorem 1.1 ([7]). Assume that \(\bar{a}_{ii} > 0 \) and

\[
\bar{r}_i > \sum_{j \neq i} \frac{\bar{a}_{ij} \bar{r}_j}{\bar{a}_{jj}} e^{2\bar{r}_j}, \quad i = 1, 2, \ldots, n.
\]

Then Eq. (1.1) has at least one positive periodic solution of periodic \(\omega \).

Theorem 1.2 ([18]). Assume that \(\tau_{ii}(t) = 0, \quad i = 1, 2, \ldots, n \), and that

(C): the linear system

\[
\sum_{j=1}^{n} \bar{a}_{ij} x_j = \bar{r}_i, \quad i = 1, 2, \ldots, n,
\]

has a positive solution.

In addition, suppose that

\[
\bar{r}_i > \sum_{j \neq i} \bar{a}_{ij} \max_{0 \leq s \leq \omega} \left| \frac{r_j(s)}{a_{jj}(s)} \right|, \quad i = 1, 2, \ldots, n.
\]

Then Eq. (1.1) has at least one positive \(\omega \)-periodic solution.

In the the proof of Theorem 1.2, the author took advantage of the fact that there is no deviating argument in the negative feedback terms \(a_{ij}(t)x_i(t), \quad i = 1, 2, \ldots, n \). Thus, Theorem 1.2 may fail for Eq. (1.1) when \(\tau_{ii}(t) \neq 0 \). Furthermore, by Lemma 4.1 in [11], it is not difficult to see that condition (1.4) implies (C). But conditions (1.4) and (1.6) are independent in the sense that neither of them implies the other, and therefore, Theorems 1.1 and 1.2 are complementary.

In both Theorems 1.1 and 1.2, (C) is an essential condition. Obviously, when \(a_{ij}(t) \equiv a_{ij}, \quad r_i(t) \equiv r_i, \quad i, j = 1, 2, \ldots, n \), are all constants, (C) is also a sufficient and necessary condition for Eq. (1.1) to have a trivial positive periodic solution.
Lemma 2.2 (Krasnoselskii, [13]). Let ω be a completely continuous operator such that either $\bar{a}x = \bar{r}$ or $\bar{a}x = \bar{r}$, which is implied by (C) under (1.2) in this case (since Eq. (1.5) becomes $\bar{a}x = \bar{r}$).

Motivated by these two observations, we conjecture that (1.4) and (1.6) may not be necessary, and condition (C) may only be enough to guarantee that (1.1) has at least one positive ω-periodic solution.

The purpose of this paper is to give a positive answer to the above conjecture. More precisely, in Section 2, we prove that if (C) holds, then Eq. (1.1) has at least one positive ω-periodic solution. Furthermore, when $a_{ij}(t) \equiv a_{ij}$ and $\tau_{ij}(t) \equiv \tau_{ij}$, $i = 1, \ldots, n$ are constants but $r_{i}(t)$, $i = 1, \ldots, n$, remain ω-periodic, we show that (C) is even a sufficient and necessary condition for Eq. (1.1) to have at least one positive ω-periodic solution.

Throughout of this paper, we say a vector $x = (x_1, x_2, \ldots, x_n)^T$ is positive if $x_i > 0$, $i = 1, 2, \ldots, n$.

2. Main results

For convenience, we introduce the definition of cone and the well-known Krasnoselskii’s fixed point theorem.

Definition 2.1. Let X be a Banach space and let P be a closed, nonempty subset of X. P is a cone if

(i) $ax + \beta y \in P$ for all $x, y \in P$ and all $a, \beta \geq 0$;

(ii) $x, -x \in P$ imply $x = 0$.

Lemma 2.2 (Krasnoselskii, [13]). Let X be a Banach space, and let $P \subset X$ be a cone in X. Assume that Ω_1, Ω_2 are open bounded subsets of X with $0 \in \Omega_1 \subset \Omega_1 \subset \Omega_2$, and let

$$\varphi : P \cap (\Omega_2 \setminus \Omega_1) \to P$$

be a completely continuous operator such that either

(i) $||\varphi x|| \leq ||x||$, $\forall x \in P \cap \partial \Omega_1$ and $||\varphi x|| \geq ||x||$, $\forall x \in P \cap \partial \Omega_2$;

or

(ii) $||\varphi x|| \geq ||x||$, $\forall x \in P \cap \partial \Omega_1$ and $||\varphi x|| \leq ||x||$, $\forall x \in P \cap \partial \Omega_2$. Then φ has a fixed point in $P \cap (\Omega_2 \setminus \Omega_1)$.

Let

$$X = \left\{ x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \in C(\mathbb{R}, \mathbb{R}^n) : x(t + \omega) = x(t) \right\},$$

$$||x|| = \sum_{j=1}^{n} |x_j(0)|, \quad |x_j(0)| = \max_{t \in [0, \omega]} |x_j(t)|, \quad i = 1, 2, \ldots, n.$$

Then X is Banach space endowed with the above norm $|| \cdot ||$. If $x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \in X$ is a solution of Eq. (1.1), then

$$\left[x_i(t) \exp \left(-\int_{0}^{t} r_i(s) ds \right) \right] = -\exp \left(-\int_{0}^{t} r_i(s) ds \right) x_i(t) \sum_{j=1}^{n} a_{ij}(t) x_j(t - \tau_{ij}(t)), \quad i = 1, 2, \ldots, n.$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Integrating both sides of (2.3) over \([t, t + \omega]\), we obtain

\[
(2.4) \quad x_i(t) = \int_t^{t+\omega} G_i(t, s)x_i(s) \sum_{j=1}^{n} a_{ij}(s)x_j(s - \tau_{ij}(s))ds, \quad i = 1, 2, \ldots, n,
\]

where

\[
(2.5) \quad G_i(t, s) = \frac{1}{1 - e^{-r_i\omega}} \exp \left(- \int_t^s r_i(\xi)d\xi \right), \quad i = 1, 2, \ldots, n.
\]

Let \(\sigma = \min\{e^{-r_i\omega} : i = 1, 2, \ldots, n\}\). Now, choose the cone defined by

\[
(2.6) \quad P = \{x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \in X : x_i(t) \geq \sigma|x_i|_0, \quad i = 1, 2, \ldots, n\},
\]

and define an operator \(\Phi : X \to X\) by

\[
(2.7) \quad (\Phi x)(t) = ((\Phi x)_1(t), (\Phi x)_2(t), \ldots, (\Phi x)_n(t))^T,
\]

where

\[
(2.8) \quad (\Phi x)_i(t) = \int_t^{t+\omega} G_i(t, s)x_i(s) \sum_{j=1}^{n} a_{ij}(s)x_j(s - \tau_{ij}(s))ds, \quad i = 1, 2, \ldots, n.
\]

By (2.4), it is easy to verify that \(x = x(t) \in X\) is a \(\omega\)-periodic solution of Eq. (1.1) provided \(x\) is a fixed point of \(\Phi\).

Lemma 2.3. The mapping \(\Phi\) maps \(P\) into \(P\), i.e. \(\Phi P \subset P\).

Proof. It is easy to see that for \(t \leq s \leq t + \omega\),

\[
(2.9) \quad A_i := \frac{e^{-r_i\omega}}{1 - e^{-r_i\omega}} \leq G_i(t, s) \leq \frac{1}{1 - e^{-r_i\omega}} := B_i, \quad i = 1, 2, \ldots, n.
\]

From (2.8) and (2.9), we have for \(x \in P\)

\[
|(\Phi x)|_0 \leq B_i \int_0^\omega x_i(s) \sum_{j=1}^{n} a_{ij}(s)x_j(s - \tau_{ij}(s))ds
\]

and

\[
(\Phi x)_i(t) \geq A_i \int_0^\omega x_i(s) \sum_{j=1}^{n} a_{ij}(s)x_j(s - \tau_{ij}(s))ds \geq \frac{A_i}{B_i}(\Phi x)|_0 \geq \sigma(\Phi x)|_0.
\]

Hence, \(\Phi P \subset P\). The proof is completed. \(\square\)

Lemma 2.4. \(\Phi : P \to P\) is completely continuous.

Proof. Set

\[
f_i(t, x_t) = x_i(t) \sum_{j=1}^{n} a_{ij}(t)x_j(t - \tau_{ij}(t)), \quad i = 1, 2, \ldots, n.
\]

We first show that \(\Phi\) is continuous. For any \(L > 0\) and \(\varepsilon > 0\), there exists a \(\delta > 0\) such that for \(\phi, \psi \in X\), \(||\phi|| \leq L, ||\psi|| \leq L\), and \(||\phi - \psi|| < \delta\) imply

\[
(2.10) \quad \max_{s \in [0, \omega]} |f_i(s, \phi_s) - f_i(s, \phi_s)| < \frac{\varepsilon}{nB\omega}, \quad i = 1, 2, \ldots, n,
\]
where $B = \max_{1 \leq i \leq n} B_i$. If $x, y \in X$ with $||x|| \leq L, ||y|| \leq L,$ and $||x - y|| \leq \delta$, then from (2.8), (2.9) and (2.10), we have

$$||\Phi x - (\Phi y)|| \leq \int_{0}^{\omega} |G_i(t, s)| |f_i(s, x_s) - f_i(s, y_s)| ds \leq B \int_{0}^{\omega} |f_i(s, x_s) - f_i(s, y_s)| ds \leq \sum_{n} \varepsilon, \quad i = 1, 2, \ldots, n.$$

This yields

$$||\Phi x - (\Phi y)|| = \sum_{i=1}^{n} |(\Phi x)_i - (\Phi y)_i|_0 < \varepsilon.$$

Thus, Φ is continuous.

Next, we show that Φ is compact. Set $a = \max_{1 \leq i \leq n} \sum_{j=1}^{n} \bar{a}_{ij}$. Let $M > 0$ be any constant and let $S = \{x \in X : ||x|| \leq M\}$ be a bounded set. For any $x \in S$, it follows from (2.8) and (2.9) that

$$|(\Phi x)_i|_0 \leq B_i \int_{0}^{\omega} |x_i(s)| \sum_{j=1}^{n} a_{ij(s)} |x_j(s - \tau_{ij}(s))| ds \leq \omega MB^2 \sum_{j=1}^{n} \bar{a}_{ij} \leq a \omega MB^2,$$

and so

$$||\Phi x|| = \sum_{i=1}^{n} |(\Phi x)_i|_0 \leq n a \omega MB^2, \quad \forall x \in S.$$

Again, from (2.8), we have

$$[(\Phi x)_i(t)]' = r_i(t)(\Phi x)_i(t) - x_i(t) \sum_{j=1}^{n} a_{ij}(t)x_j(t - \tau_{ij}(t)), \quad i = 1, 2, \ldots, n.$$

Then for $x \in S$,

$$||[(\Phi x)_i(t)]'|| \leq r_i(t)|\Phi x_i(t)| + |x_i(t)| \sum_{j=1}^{n} a_{ij}(t)|x_j(t - \tau_{ij}(t))| \leq r_i^u a \omega BM^2 + M^2 \sum_{j=1}^{n} a_{ij}^u \leq KM^2, \quad i = 1, 2, \ldots, n,$$

where $K = \max_{1 \leq i \leq n} (r_i^u a \omega B + \sum_{j=1}^{n} a_{ij}^u)$ and

$$r_i^u = \max_{t \in [0, \omega]} r_i(t), \quad a_{ij}^u = \max_{t \in [0, \omega]} a_{ij}(t), \quad i,j = 1, 2, \ldots, n.$$

Hence, $\Phi S \subset X$ is a family of uniformly bounded and equi-continuous functions. By the Ascoli-Arzela Theorem (see, e.g., [20], p. 169), the operator Φ is compact, and so it is completely continuous. The proof is completed. \hfill \Box

We are now in a position to state and prove our main results of this paper.

Theorem 2.5. Assume that (C) holds. Then Eq. (1.1) has at least one positive ω-periodic solution.
Proof. Let \(x^* = (x_1^*, x_2^*, \ldots, x_n^*)^T \) with \(x_i^* > 0, \ i = 1, 2, \ldots, n \), be a positive solution of (1.5). Set
\[
A = \min \{ \tilde{r}_i A_i : i = 1, 2, \ldots, n \}, \quad B = \max \{ \tilde{r}_i B_i : i = 1, 2, \ldots, n \}.
\]
Then \(0 < A < B < \infty \). Define
\[
\Omega_1 = \left\{ x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \in X : |x_i| < \frac{x_i^*}{B \omega}, \ i = 1, 2, \ldots, n \right\}.
\]
If \(x = x(t) \in P \cap \partial \Omega_1 \), then \(\sigma |x_i| \leq x_i(t) \leq |x_i| = (B \omega)^{-1} x_i^*, \ i = 1, 2, \ldots, n \), and
\[
|\Phi(x)|_0 \leq B \int_0^\omega x_i(s) \sum_{j=1}^n a_{ij}(s) x_j(s - \tau_{ij}(s)) ds
\]
\[
\leq B_i \omega |x_i|_0 \sum_{j=1}^n \tilde{a}_{ij} |x_j|_0
\]
\[
= B_i \omega (B \omega)^{-1} |x_i|_0 \sum_{j=1}^n \tilde{a}_{ij} x_j^*
\]
\[
= B_i \tilde{r}_i \omega (B \omega)^{-1} |x_i|_0
\]
and so
\[
|\Phi(x)|_0 \leq \sum_{i=1}^n |(\Phi x)_i|_0 \leq \sum_{i=1}^n |x_i|_0 = |x|_0, \quad \forall \ x = x(t) \in P \cap \partial \Omega_1.
\]
Next, we define
\[
\Omega_2 = \left\{ x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \in X : |x_i| < \frac{x_i^*}{\sigma^2 A \omega}, \ i = 1, 2, \ldots, n \right\}.
\]
If \(x = x(t) \in P \cap \partial \Omega_2 \), then \(\sigma |x_i| \leq x_i(t) \leq |x_i| = (\sigma^2 A \omega)^{-1} x_i^*, \ i = 1, 2, \ldots, n \), and
\[
(\Phi x)_i(t) \geq A_i \int_0^\omega x_i(s) \sum_{j=1}^n a_{ij}(s) x_j(s - \tau_{ij}(s)) ds
\]
\[
\geq \sigma^2 A_i \omega |x_i|_0 \sum_{j=1}^n \tilde{a}_{ij} |x_j|_0
\]
\[
= A_i \omega (A \omega)^{-1} |x_i|_0 \sum_{j=1}^n \tilde{a}_{ij} x_j^*
\]
\[
= A_i \tilde{r}_i \omega (A \omega)^{-1} |x_i|_0
\]
and so
\[
|\Phi(x)|_0 \geq \sum_{i=1}^n |(\Phi x)_i|_0 \geq \sum_{i=1}^n |x_i|_0 = |x|_0, \quad \forall \ x = x(t) \in P \cap \partial \Omega_2.
\]
Obviously, \(\Omega_1 \) and \(\Omega_2 \) are open bounded subsets of \(X \) with \(0 \in \Omega_1 \subset \Omega_2 \subset \Omega_2 \).
Hence, \(\Phi : P \cap (\Omega_2 \setminus \Omega_1) \rightarrow P \) is a completely continuous operator and satisfies
condition (i) in Lemma 2.2. By Lemma 2.2, there exists a point \(x = x(t) \in P \cap (\Omega_2 \setminus \Omega_1) \) such that \(x(t) = (\Phi x)(t) \), i.e., \(x(t) \) is a positive \(\omega \)-periodic solution of Eq. (1.1). The proof is completed. \(\square \)

Theorem 2.6. Assume that \(a_{ii}(t) \equiv a_{ij} \geq 0, \tau_{ij}(t) \equiv \tau_{ij}, i, j = 1, 2, \ldots, n. \) Then Eq. (1.1) has at least one positive \(\omega \)-periodic solution if and only if the system of linear equations

\[
\sum_{j=1}^{n} a_{ij} x_j = \bar{r}_i, \quad i = 1, 2, \ldots, n,
\]

has a positive solution.

Proof. If (2.16) has a positive solution, then by Theorem 2.5, Eq. (1.1) has at least one positive \(\omega \)-periodic solution. On the other hand, if Eq. (1.1) has at least one positive \(\omega \)-periodic solution, say \(x(t) = (x_1(t), x_2(t), \ldots, x_n(t))^T \). Then from (1.1), we have

\[
\int_{0}^{\omega} \left[r_i(t) - \sum_{j=1}^{n} a_{ij} x_j(t - \tau_{ij}) \right] dt = 0, \quad i = 1, 2, \ldots, n.
\]

It follows that

\[
\sum_{j=1}^{n} a_{ij} \left(\frac{1}{\omega} \int_{0}^{\omega} x_j(t) dt \right) = \bar{r}_i, \quad i = 1, 2, \ldots, n.
\]

This shows that the system (2.16) of linear equations has a positive solution \(x_j = \frac{1}{\omega} \int_{0}^{\omega} x_j(t) dt, \quad j = 1, 2, \ldots, n. \) The proof is completed. \(\square \)

Remark 2.7. The method in this paper may be used to more general Lotka-Volterra competition systems than Eq. (1.1).

REFERENCES

[23] H. L. Smith, Periodic competitive differential and the discrete dynamics of a competitive map, J. Different. Eq. 64(1986), 165-194. MR0851910 (87k:92027)

School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, People’s Republic of China

E-mail address: tangxh@mail.csu.edu.cn

Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

E-mail address: xzou@uwo.ca