On positive periodic solutions of Lotka-Volterra competition systems with deviating arguments

Authors:
Xianhua Tang and Xingfu Zou

Journal:
Proc. Amer. Math. Soc. **134** (2006), 2967-2974

MSC (2000):
Primary 34K13; Secondary 34K20, 92D25

Published electronically:
May 9, 2006

MathSciNet review:
2231621

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: By using Krasnoselskii's fixed point theorem, we prove that the following periodic species Lotka-Volterra competition system with multiple deviating arguments

**[1]**Carlos Alvarez and Alan C. Lazer,*An application of topological degree to the periodic competing species problem*, J. Austral. Math. Soc. Ser. B**28**(1986), no. 2, 202–219. MR**862570**, 10.1017/S0334270000005300**[2]**Shair Ahmad,*On the nonautonomous Volterra-Lotka competition equations*, Proc. Amer. Math. Soc.**117**(1993), no. 1, 199–204. MR**1143013**, 10.1090/S0002-9939-1993-1143013-3**[3]**Anna Battauz and Fabio Zanolin,*Coexistence states for periodic competitive Kolmogorov systems*, J. Math. Anal. Appl.**219**(1998), no. 2, 179–199. MR**1606377**, 10.1006/jmaa.1997.5726**[4]**Yuming Chen and Zhan Zhou,*Stable periodic solution of a discrete periodic Lotka-Volterra competition system*, J. Math. Anal. Appl.**277**(2003), no. 1, 358–366. MR**1954481**, 10.1016/S0022-247X(02)00611-X**[5]**J. M. Cushing,*Two species competition in a periodic environment*, J. Math. Biol.**10**(1980), no. 4, 385–400. MR**602256**, 10.1007/BF00276097**[6]**Meng Fan and Ke Wang,*Global periodic solutions of a generalized 𝑛-species Gilpin-Ayala competition model*, Comput. Math. Appl.**40**(2000), no. 10-11, 1141–1151. MR**1784658**, 10.1016/S0898-1221(00)00228-5**[7]**Meng Fan, Ke Wang, and Daqing Jiang,*Existence and global attractivity of positive periodic solutions of periodic 𝑛-species Lotka-Volterra competition systems with several deviating arguments*, Math. Biosci.**160**(1999), no. 1, 47–61. MR**1704338**, 10.1016/S0025-5564(99)00022-X**[8]**H. I. Freedman and Paul Waltman,*Persistence in a model of three competitive populations*, Math. Biosci.**73**(1985), no. 1, 89–101. MR**779763**, 10.1016/0025-5564(85)90078-1**[9]**K. Gopalsamy,*Global asymptotical stability in a periodic Lotka-Volterra system,*J. Austral. Math. Soc. Ser. B 24(1982), 160-.**[10]**K. Gopalsamy,*Global asymptotical stability in a periodic Lotka-Volterra system,*J. Austral. Math. Soc. Ser. B 29(1985), 66-72.**[11]**K. Gopalsamy,*Stability and oscillations in delay differential equations of population dynamics*, Mathematics and its Applications, vol. 74, Kluwer Academic Publishers Group, Dordrecht, 1992. MR**1163190****[12]**I. Győri and G. Ladas,*Oscillation theory of delay differential equations*, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. With applications; Oxford Science Publications. MR**1168471****[13]**M. A. Krasnosel′skiĭ,*Positive solutions of operator equations*, Translated from the Russian by Richard E. Flaherty; edited by Leo F. Boron, P. Noordhoff Ltd. Groningen, 1964. MR**0181881****[14]**Philip Korman,*Some new results on the periodic competition model*, J. Math. Anal. Appl.**171**(1992), no. 1, 131–138. MR**1192498**, 10.1016/0022-247X(92)90381-M**[15]**Yang Kuang,*Delay differential equations with applications in population dynamics*, Mathematics in Science and Engineering, vol. 191, Academic Press, Inc., Boston, MA, 1993. MR**1218880****[16]**Yongkun Li,*Periodic solutions of 𝑁-species competition system with time delays*, J. Biomath.**12**(1997), no. 1, 1–7. MR**1460907****[17]**Yongkun Li,*On a periodic delay logistic type population model*, Ann. Differential Equations**14**(1998), no. 1, 29–36. MR**1633664****[18]**Yongkun Li,*Periodic solutions for delay Lotka-Volterra competition systems*, J. Math. Anal. Appl.**246**(2000), no. 1, 230–244. MR**1761160**, 10.1006/jmaa.2000.6784**[19]**Yongkun Li and Yang Kuang,*Periodic solutions of periodic delay Lotka-Volterra equations and systems*, J. Math. Anal. Appl.**255**(2001), no. 1, 260–280. MR**1813821**, 10.1006/jmaa.2000.7248**[20]**H. L. Royden,*Real analysis*, 3rd ed., Macmillan Publishing Company, New York, 1988. MR**1013117****[21]**Akira Shibata and Nobuhiko Saitô,*Time delays and chaos in two competing species*, Math. Biosci.**51**(1980), no. 3-4, 199–211. MR**587228**, 10.1016/0025-5564(80)90099-1**[22]**Hal L. Smith,*Periodic solutions of periodic competitive and cooperative systems*, SIAM J. Math. Anal.**17**(1986), no. 6, 1289–1318. MR**860914**, 10.1137/0517091**[23]**Hal L. Smith,*Periodic competitive differential equations and the discrete dynamics of competitive maps*, J. Differential Equations**64**(1986), no. 2, 165–194. MR**851910**, 10.1016/0022-0396(86)90086-0**[24]**Antonio Tineo and Carlos Alvarez,*A different consideration about the globally asymptotically stable solution of the periodic 𝑛-competing species problem*, J. Math. Anal. Appl.**159**(1991), no. 1, 44–50. MR**1119420**, 10.1016/0022-247X(91)90220-T**[25]**X. H. Tang and Xingfu Zou,*3/2-type criteria for global attractivity of Lotka-Volterra competition system without instantaneous negative feedbacks*, J. Differential Equations**186**(2002), no. 2, 420–439. MR**1942216**, 10.1016/S0022-0396(02)00011-6**[26]**X. H. Tang and Xingfu Zou,*Global attractivity of non-autonomous Lotka-Volterra competition system without instantaneous negative feedback*, J. Differential Equations**192**(2003), no. 2, 502–535. MR**1990850**, 10.1016/S0022-0396(03)00042-1

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
34K13,
34K20,
92D25

Retrieve articles in all journals with MSC (2000): 34K13, 34K20, 92D25

Additional Information

**Xianhua Tang**

Affiliation:
School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410083, People’s Republic of China

Email:
tangxh@mail.csu.edu.cn

**Xingfu Zou**

Affiliation:
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

Email:
xzou@uwo.ca

DOI:
http://dx.doi.org/10.1090/S0002-9939-06-08320-1

Keywords:
Positive periodic solution,
Lotka-Volterra competition system

Received by editor(s):
August 13, 2004

Received by editor(s) in revised form:
April 29, 2005

Published electronically:
May 9, 2006

Additional Notes:
The first author was supported in part by NNSF of China (No. 10471153), and the second author was supported in part by the NSERC of Canada and by a Faculty of Science Dean’s Start-Up Grant at the University of Western Ontario.

Communicated by:
Carmen C. Chicone

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.