Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The first eigenvalue of a closed manifold with positive Ricci curvature


Author: Jun Ling
Journal: Proc. Amer. Math. Soc. 134 (2006), 3071-3079
MSC (2000): Primary 58J50, 35P15; Secondary 53C21
DOI: https://doi.org/10.1090/S0002-9939-06-08332-8
Published electronically: May 1, 2006
MathSciNet review: 2231634
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new estimate on the lower bound for the first positive eigenvalue of the Laplacian on a closed manifold with positive Ricci curvature in terms of the lower bound of the Ricci curvature and the largest interior radius of the nodal domains of eigenfunctions of the eigenvalue.


References [Enhancements On Off] (What's this?)

  • 1. I. Chavel,
    Eigenvalues in Riemannian Geometry,
    Academic Press, Orlando, Fl., 1984. MR 0768584 (86g:58140)
  • 2. R. Courant and D. Hilbert,
    Methods of Mathematical Physics, volume I.
    Interscience, New York, 1953. MR 0065391 (16:426a)
  • 3. P. Li,
    Lecture Notes on Geometric Analysis, Lecture Notes Series, #6,
    Seoul National University, Seoul, Korea. MR 1320504 (96m:58269)
  • 4. P. Li and S. T. Yau,
    On the Schrödinger equation and the eigenvalue problem,
    Comm. Math. Phys, 88(1983), 309-318.MR 0701919 (84k:58225)
  • 5. P. Li and S. T. Yau,
    Estimates of eigenvalues of a compact Riemannian manifold,
    AMS Proc. Symp. Pure Math., 36(1980), 205-239.MR 0573435 (81i:58050)
  • 6. A. Lichnerowicz,
    Geometrie des groupes de transformations,
    Dunod, Paris, 1958. MR 0124009 (23:A1329)
  • 7. Jun Ling,
    A lower bound for the gap between the first two eigenvalues of Schrödinger operators on convex domains in S$ ^n$ or R$ ^n$,
    Michigan Math. J., 40(1993), 259-270. MR 1226831 (94h:35185)
  • 8. Jun Ling,
    A bound for the first fundamental gap.
    Ph.D. Dissertation, State University of New York at Buffalo.
  • 9. Jun Ling,
    Estimates on the lower bound of the first gap,
    Preprint, 2004.
  • 10. R. Schoen, and S. T. Yau,
    Lecture Notes on Differential Geometry,
    Conference Procedings and Lecture Notes in Geometry and Topology, Vol. 1,
    International Press, 1994. MR 1333601 (97d:53001)
  • 11. D. Yang,
    Lower bound estimates on the first eigenvalue for compact manifolds with positive Ricci curvature,
    Pacific Journal of Mathematics, 190(1999), 383-398. MR 1722898 (2001b:53039)
  • 12. J.-Q. Zhong and H. C. Yang,
    On the estimate of the first eigenvalue of a compact Riemannian manifold,
    Sci. Sinica, Ser. A 27, (1984), 1265-1273. MR 0794292 (87a:58162)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 58J50, 35P15, 53C21

Retrieve articles in all journals with MSC (2000): 58J50, 35P15, 53C21


Additional Information

Jun Ling
Affiliation: Department of Mathematics, Utah Valley State College, Orem, Utah 84058
Email: lingju@uvsc.edu

DOI: https://doi.org/10.1090/S0002-9939-06-08332-8
Keywords: Eigenvalue, lower bound, closed Riemannian manifold
Received by editor(s): October 15, 2004
Received by editor(s) in revised form: April 28, 2005
Published electronically: May 1, 2006
Communicated by: Jozef Dodziuk
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society