Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

   

 

Beurling-Nevanlinna inequality for subfunctions of the stationary Schrödinger operator


Author: Alexander Kheyfits
Journal: Proc. Amer. Math. Soc. 134 (2006), 2943-2950
MSC (2000): Primary 31A05, 30C80, 35J10
Published electronically: April 11, 2006
MathSciNet review: 2231618
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The classical Beurling-Nevanlinna upper bound for subharmonic functions is extended to subsolutions of the stationary Schrödinger equation.


References [Enhancements On Off] (What's this?)

  • 1. Albert Baernstein II and B. A. Taylor, Spherical rearrangements, subharmonic functions, and *-functions in 𝑛-space, Duke Math. J. 43 (1976), no. 2, 245–268. MR 0402083 (53 #5906)
  • 2. Beurling, A., Études sur un problème de majoration. Thèse, Uppsala, 1933.
  • 3. Bonic, R. A., Hajian, G. V., Cranford, E., and Krantz, S., Freshman Calculus. D. C. Heath and Co. Lexington, MA, 1971.
  • 4. Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038 (30 #1270)
  • 5. W. K. Hayman, Subharmonic functions. Vol. 2, London Mathematical Society Monographs, vol. 20, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1989. MR 1049148 (91f:31001)
  • 6. Lars Hörmander, Notions of convexity, Progress in Mathematics, vol. 127, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1301332 (95k:00002)
  • 7. A. I. Kheĭfits, The Riesz-Herglotz formula for generalized harmonic functions and their boundary behavior, Dokl. Akad. Nauk SSSR 321 (1991), no. 2, 263–265 (Russian); English transl., Soviet Math. Dokl. 44 (1992), no. 3, 688–691. MR 1153552
  • 8. B. Ya. Levin and A. I. Kheĭfits, Asymptotic behavior of subfunctions of the Schrödinger operator in an 𝑛-dimensional cone, Dokl. Akad. Nauk SSSR 301 (1988), no. 3, 540–543 (Russian); English transl., Soviet Math. Dokl. 38 (1989), no. 1, 109–112. MR 968495 (91h:35099)
  • 9. Levin, B. Ya. and Kheyfits, A., Asymptotic behavior of subfunctions of the stationary Schrödinger operator. Preprint, http://arXiv/abs/math/021132896, 2002, 96 pp.
  • 10. Nevanlinna, R., Über eine Minimumaufgabe in der Theorie der konformen Abbildung. Ges. Wiss. Göttingen, Math. Phys. Kl. 37(1933), 103-115.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 31A05, 30C80, 35J10

Retrieve articles in all journals with MSC (2000): 31A05, 30C80, 35J10


Additional Information

Alexander Kheyfits
Affiliation: Graduate School and Bronx Community College of The City University of New York, Bronx, New York 10453
Email: akheyfits@gc.cuny.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-06-08333-X
PII: S 0002-9939(06)08333-X
Keywords: Beurling-Nevanlinna inequality, subharmonic functions associated with the stationary Schr\"{o}dinger operator
Received by editor(s): May 19, 2004
Received by editor(s) in revised form: April 26, 2005
Published electronically: April 11, 2006
Dedicated: To Iossif V. Ostrovskii on the occasion of his 70th Anniversary
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2006 by Alexander I. Kheyfits