Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Minimizing Euler characteristics of symplectic four-manifolds

Author: D. Kotschick
Journal: Proc. Amer. Math. Soc. 134 (2006), 3081-3083
MSC (2000): Primary 57M07, 57R17, 57R57
Published electronically: May 4, 2006
MathSciNet review: 2231635
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the minimal Euler characteristic of a closed symplectic four-manifold with given fundamental group is often much larger than the minimal Euler characteristic of almost complex closed four-manifolds with the same fundamental group. In fact, the difference between the two is arbitrarily large for certain groups.

References [Enhancements On Off] (What's this?)

  • 1. S. Baldridge and P. Kirk, On symplectic 4-manifolds with prescribed fundamental group. Preprint arXiv:math.GT/0504345 v1 17Apr2005.
  • 2. M. Dehn, Über unendliche diskontinuierliche Gruppen, Math. Annalen 71 (1912), 116-144. MR 1511645
  • 3. R. E. Gompf, A new construction of symplectic manifolds, Ann. Math. 142 (1995), 527-595. MR 1356781 (96j:57025)
  • 4. M. Gromov, Volume and bounded cohomology, Publ. Math. I.H.E.S. 56 (1982), 5-99. MR 0686042 (84h:53053)
  • 5. J.-C. Hausmann and S. Weinberger, Caractéristiques d'Euler et groupes fondamentaux des variétés de dimension 4, Comment. Math. Helv. 60 (1985), 139-144. MR 0787667 (86m:57020)
  • 6. D. Kotschick, All fundamental groups are almost complex, Bull. London Math. Soc. 24 (1992), 377-378. MR 1165382 (93f:57026)
  • 7. D. Kotschick, Four-manifold invariants of finitely presentable groups, in Topology, Geometry and Field Theory, ed. K. Fukaya et. al., World Scientific, 1994. MR 1312175 (95m:57003)
  • 8. D. Kotschick, The Seiberg-Witten invariants of symplectic four-manifolds, Séminaire Bourbaki, 48ème année, 1995-96, no. 812, Astérisque 241 (1997), 195-220. MR 1472540 (98h:57057)
  • 9. A.-K. Liu, Some new applications of the general wall crossing formula, Math. Research Letters 3 (1996), 569-585. MR 1418572 (97k:57038)
  • 10. C. H. Taubes, SW $ \Rightarrow$ Gr, From the Seiberg-Witten equations to pseudo-holomorphic curves, Jour. Amer. Math. Soc. 9 (1996), 845-918. MR 1362874 (97a:57033)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 57M07, 57R17, 57R57

Retrieve articles in all journals with MSC (2000): 57M07, 57R17, 57R57

Additional Information

D. Kotschick
Affiliation: Mathematisches Institut, Ludwig-Maximilians-Universität München, Theresien- strasse 39, 80333 München, Germany

Received by editor(s): May 3, 2005
Published electronically: May 4, 2006
Additional Notes: The author is grateful to P. Kirk for pointing out the question that is answered here.
Communicated by: Ronald A. Fintushel
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society