Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Counting abelian group structures


Author: Francis Clarke
Journal: Proc. Amer. Math. Soc. 134 (2006), 2795-2799
MSC (2000): Primary 20K01; Secondary 20D60, 20K35, 20K40
DOI: https://doi.org/10.1090/S0002-9939-06-08396-1
Published electronically: April 10, 2006
MathSciNet review: 2231600
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A bijective proof is given of a recurrence for the function counting the number of binary operations which endow a finite set with the structure of an abelian group. The proof depends on a lemma in ``labelled homological algebra'' and provides a simple route to a ``curious result'' of Philip Hall.


References [Enhancements On Off] (What's this?)

  • 1. H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, https://doi.org/10.1007/BFb0099440
  • 2. Euler, Leonhard, Introductio in analysin infinitorum, 1, Lausanne, 1748, Opera Omnia 8 B. G. Teubner, Geneva, 1922.
  • 3. Hall, Philip, A partition formula connected with abelian groups, Comm. Math. Helv. 11 (1938/39), 126-129.
  • 4. Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156879
  • 5. Macdonald, I. G., The algebra of partitions, 315-333, K. W. Gruenberg, J. Roseblade, Group theory: Essays for Philip Hall, Academic Press, London, 1984.MR 0780573 (86d:05011)
  • 6. Avinoam Mann, Philip Hall’s “rather curious” formula for abelian 𝑝-groups. part B, Israel J. Math. 96 (1996), no. part B, 445–448. MR 1433700, https://doi.org/10.1007/BF02785528
  • 7. Tomoyuki Yoshida, P. Hall’s strange formula for abelian 𝑝-groups, Osaka J. Math. 29 (1992), no. 3, 421–431. MR 1181111
  • 8. Tomoyuki Yoshida, Categorical aspects of generating functions. I. Exponential formulas and Krull-Schmidt categories, J. Algebra 240 (2001), no. 1, 40–82. MR 1830543, https://doi.org/10.1006/jabr.2000.8602

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 20K01, 20D60, 20K35, 20K40

Retrieve articles in all journals with MSC (2000): 20K01, 20D60, 20K35, 20K40


Additional Information

Francis Clarke
Affiliation: Department of Mathematics, University of Wales Swansea, Swansea SA2 8PP, Wales
Email: F.Clarke@Swansea.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-06-08396-1
Received by editor(s): April 15, 2005
Published electronically: April 10, 2006
Communicated by: Jonathan I. Hall
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society