Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Some upper bounds for sums of eigenvalues of the Neumann Laplacian


Authors: Liangpan Li and Lan Tang
Journal: Proc. Amer. Math. Soc. 134 (2006), 3301-3307
MSC (2000): Primary 35P15; Secondary 58G25
Published electronically: May 12, 2006
MathSciNet review: 2231915
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mu_{k}(\Omega)$ be the $ k$th Neumann eigenvalue of a bounded domain $ \Omega$ with piecewisely smooth boundary in $ \textbf{R}^{n}$. In 1992, P. Kröger proved that $ k^{-\frac{n+2}{n}}\sum_{j=1}^{k}\mu_{j}\leq{4n\pi^{2}\over n+2}( \omega_{n}V)^{-2/n}$, where the upper bound is sharp in view of Weyl's asymptotic formula. The aim of this paper is twofold. First, we will improve this estimate by multiplying a factor in terms of $ k$ to its right-hand side which approaches strictly from below to 1 as $ k$ tends to infinity. Second, we will generalize Kröger's estimate to the case when $ \Omega$ is a compact Euclidean submanifold.


References [Enhancements On Off] (What's this?)

  • 1. E. B. Davies, Heat Kernels and Spectral Theory. Cambridge Univ. Press, Cambridge, 1989. MR 1103113 (92a:35035)
  • 2. V. P. Havin, B. Jöricke, The Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, 1994. MR 1129019 (93e:42001)
  • 3. L. Hermi, Research Statement - December 2003. http://math.arizona.edu/ hermi/rp.pdf.
  • 4. L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983. MR 0717035 (85g:35002a)
  • 5. O. Kovrijkine, Some results related to the Logvinenko-Sereda theorem, Proc. Amer. Math. Soc. 129(2001), 3037-3047. MR 1840110 (2003c:46031)
  • 6. P. Kröger, Upper bounds for the Neumann eigenvalues on a bounded domain in Euclidean space, J. Funct. Anal. 106(1992), 353-357. MR 1165859 (93d:47091)
  • 7. P. Li, S. T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88(1983), 309-318. MR 0701919 (84k:58225)
  • 8. A. Melas, A lower bound for sums of eigenvalues of the Laplacian, Proc. Amer. Math. Soc. 131(2003), 631-636. MR 1933356 (2003i:35218)
  • 9. R. Schoen, S. T. Yau, Lectures on Differential Geometry, International Press, Boston, 1994. MR 1333601 (97d:53001)
  • 10. H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen. Math. Ann. 71(1912), 441-469. MR 1511670

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35P15, 58G25

Retrieve articles in all journals with MSC (2000): 35P15, 58G25


Additional Information

Liangpan Li
Affiliation: Nankai Institute of Mathematics, Nankai University, Tianjin 300071, People’s Republic of China
Email: liliangpan@yahoo.com.cn

Lan Tang
Affiliation: Department of Mathematics, Xidian University, Xi’an 710071, People’s Republic of China
Address at time of publication: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
Email: ltang@math.utexas.edu

DOI: http://dx.doi.org/10.1090/S0002-9939-06-08355-9
PII: S 0002-9939(06)08355-9
Keywords: Eigenvalue, Neumann Laplacian
Received by editor(s): November 1, 2004
Received by editor(s) in revised form: May 28, 2005
Published electronically: May 12, 2006
Communicated by: Richard A. Wentworth
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.