Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Further results on the connectivity of Parseval frame wavelets


Authors: G. Garrigós, E. Hernández, H. Sikic and F. Soria
Journal: Proc. Amer. Math. Soc. 134 (2006), 3211-3221
MSC (2000): Primary 42C15, 42C40
DOI: https://doi.org/10.1090/S0002-9939-06-08358-4
Published electronically: May 11, 2006
MathSciNet review: 2231904
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a previous paper, the authors introduced new ideas to treat the problem of connectivity of Parseval frames. With these ideas it was shown that a large set of Parseval frames is arcwise connected. In this article we exhibit a larger class of Parseval frames for which the arcwise connectivity is true. This larger class fails to include all Parseval frames.


References [Enhancements On Off] (What's this?)

  • 1. A. Bonami, S. Durand and G. Weiss, ``Wavelets obtained by continuous deformations of the Haar wavelet''. Rev. Mat. Iberoam. 12 (1996), 1-18. MR 1387583 (98k:42033)
  • 2. J. Cilleruelo and A. Córdoba, La teoría de los números. Mondadori España (1992).
  • 3. G. Garrigós, E. Hernández, H. Šikic, F. Soria, G. Weiss and E. Wilson, ``Connectivity in the set of Tight Frame Wavelets''. Glasnik Matematicki. 38 (58) (2003), 75-98. MR 1987107 (2005g:42078)
  • 4. E. Hernández and G. Weiss, A First Course on Wavelets. CRC Press, Boca Raton, FL (1996). MR 1408902 (97i:42015)
  • 5. E. Ionascu, D. Larson and C. Pearcy, ``On wavelet sets''. J. Fourier Anal. Appl. 4 (1998), 711-721. MR 1666001 (2000b:42029)
  • 6. I. Niven, Irrational numbers. The Carus Mathematical Monographs 11. Mathematical Association of America. John Wiley and Sons Inc. (1956). MR 0080123 (18:195c)
  • 7. M. Paluszynski, H. Šikic, G. Weiss and Sh. Xiao, ``Tight frame wavelets, their dimension functions, MRA tight frame wavelets and connectivity properties''. Adv. Comput. Math. 18 (2-4) (2003), 297-327. MR 1968123 (2004b:42087)
  • 8. W. Rudin, Real and Complex Analysis, Second Edition, McGraw-Hill (1974). MR 0344043 (49:8783)
  • 9. D. Speegle, ``The $ s$-elementary wavelets are path connected''. Proc. Amer. Math. Soc. 127 (1) (1999), 223-233. MR 1468204 (99b:42045)
  • 10. The Wutam Consortium, ``Basic properties of wavelets''. J. Fourier Anal. Appl. 4 (1998), 575-594.MR 1658652 (99i:42056)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 42C15, 42C40

Retrieve articles in all journals with MSC (2000): 42C15, 42C40


Additional Information

G. Garrigós
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Email: gustavo.garrigos@uam.es

E. Hernández
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Email: eugenio.hernandez@uam.es

H. Sikic
Affiliation: Department of Mathematics, University of Zagreb, Bijenicka 30, 10000 Zagreb, Croatia
Email: hsikic@math.hr

F. Soria
Affiliation: Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Email: fernando.soria@uam.es

DOI: https://doi.org/10.1090/S0002-9939-06-08358-4
Keywords: Connectivity, tight frames, Parseval frames
Received by editor(s): January 24, 2005
Received by editor(s) in revised form: May 12, 2005
Published electronically: May 11, 2006
Additional Notes: The first, second and fourth authors were supported by grant MTM2004-0678, MEC (Spain). The third author was supported by grants MZOŠ 0037118 (Croatia) and USA-Croatia NSF INT-0245238. The first author was also supported by Programa Ramón y Cajal, 2001, MCyT (Spain).
Communicated by: David R. Larson
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society