AUTOMATIC CONTINUITY OF σ-DERIVATIONS ON C^*-ALGEBRAS

MADJID MIRZAVAZIRI AND MOHAMMAD SAL MOSLEHIAN

(Communicated by Joseph A. Ball)

Abstract. Let A be a C^*-algebra acting on a Hilbert space H, let $\sigma : A \to B(H)$ be a linear mapping and let $d : A \to B(H)$ be a σ-derivation. Generalizing the celebrated theorem of Sakai, we prove that if σ is a continuous $*$-mapping, then d is automatically continuous. In addition, we show the converse is true in the sense that if d is a continuous $*$-σ-derivation, then there exists a continuous linear mapping $\Sigma : A \to B(H)$ such that d is a $*$-Σ-derivation. The continuity of the so-called $*$-(σ, τ)-derivations is also discussed.

1. Introduction

Let A be a subalgebra of an algebra B, let \mathcal{X} be a B-bimodule and let $\sigma : A \to B$ be a linear mapping. A linear mapping $d : A \to \mathcal{X}$ is called a σ-derivation if $d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$ for all $a, b \in A$ (see [3] and [4] and the references therein). If $B = \mathcal{X} = A$ and σ is the identity map on A, then we reach to the usual notion of a derivation on the algebra A.

In this paper, we investigate the continuity of σ-derivations on C^*-algebras. Let A be a C^*-algebra acting on a Hilbert space H. We prove that if $\sigma : A \to B(H)$ is a continuous $*$-linear mapping, then every σ-derivation from A into $B(H)$ is automatically continuous, and so Sakai’s theorem [8] is generalized. In addition, we establish the converse in the sense that if $d : A \to B(H)$ is a continuous $*$-σ-derivation, then there exists a continuous mapping $\Sigma : A \to B(H)$ such that d is a $*$-Σ-derivation. In the last section we discuss the continuity of the so-called $*$-(σ, τ)-derivations.

The importance of our approach is that σ is a linear mapping in general, not necessarily an algebra homomorphism. There are some applications of σ-derivations used to develop an approach to deformations of Lie algebras which have many applications in models of quantum phenomena and in analysis of complex systems; cf. [1].
For the definition and elementary properties of C^*-algebras we refer the reader to [5] and [6].

2. Elementary properties of σ-derivations

Throughout this section, A is a subalgebra of an algebra B, \mathcal{X} is a B-bimodule and $\sigma : A \to B$ is a linear mapping.

A linear mapping $d : A \to \mathcal{X}$ is called a σ-derivation if

$$d(ab) = d(a)\sigma(b) + \sigma(a)d(b)$$

for all $a, b \in A$. Familiar examples are:

(i) every ordinary derivation δ of an algebra A into an A-bimodule \mathcal{X} is an ι-derivation (where ι denotes the identity map on A);

(ii) every endomorphism ϕ on A is a $\frac{1}{2}$-derivation;

(iii) for a given homomorphism σ on A and a fixed arbitrary element x in an A-bimodule \mathcal{X}, the so-called σ-inner derivation is defined to be $d_{\sigma}(a) = x\sigma(a) - \sigma(a)x$.

An interesting link between σ-derivations and algebra homomorphisms follows.

Theorem 2.1. Let $\sigma : A \to B$ be a homomorphism and let $d : A \to \mathcal{X}$ be a σ-derivation. Then the following hold:

(i) \mathcal{X} equipped with the module multiplications $a \cdot x = \sigma(a)x$ and $x \cdot a = x\sigma(a)$ is an A-bimodule denoted by $\overline{\mathcal{X}}$.

(ii) $d : A \to \overline{\mathcal{X}}$ is an ordinary derivation.

(iii) $C = A \oplus \overline{\mathcal{X}}$ equipped with the multiplication $(a, x)(b, y) = (ab, x \cdot b + a \cdot y)$ is an algebra, and $\varphi_d : A \to C$ defined by $\varphi_d(a) = (a, d(a))$ is an injective homomorphism.

(iv) If A, B and \mathcal{X} are normed, σ is continuous, and C is equipped with the norm $\|(a, x)\| = \|a\| + \sup\{|x|, \|a_1 \cdot x\|, \|a_2 \cdot x\|, \|\sigma(a_1 \cdot x)\|, \|\sigma(a_2 \cdot x)\| : a_1, a_2 \in A, \|a_1\| \leq 1, \|a_2\| \leq 1\}$, then φ_d is continuous if and only if d is continuous. Thus if every injective homomorphism of A into a Banach algebra is continuous, then every σ-derivation of A into a Banach B-bimodule is continuous.

Proof. Straightforward (see [6]). \square

Recall that if Y and Z are normed spaces and $T : Y \to Z$ is a linear mapping, then the set of all z such that there is a sequence $\{y_n\}$ in Y with $y_n \to 0$ and $Ty_n \to z$ is called the separating space $S(T)$ of T. Clearly,

$$S(T) = \bigcap_{n=1}^{\infty} \{T(y) : \|y\| < 1/n\}$$

is a closed linear space. If Y and Z are Banach spaces, by the closed graph theorem, T is continuous if and only if $S(T) = \{0\}$.

Lemma 2.2. Let $d : A \to \mathcal{X}$ be a σ-derivation. Then

$$d(c)(\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ca) - \sigma(c)\sigma(a))d(b)$$

for all $a, b, c \in A$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Proof.
\[
d(c(ab)) = d(c)\sigma(ab) + \sigma(c)d(ab)
\]
\[
d(c)\sigma(ab) = d(cab) - \sigma(c)d(ab)
\]
\[
= (d(ca)\sigma(b) + \sigma(ca)d(b)) - \sigma(c)d(ab)
\]
\[
= (d(c)\sigma(a) + \sigma(c)d(a))\sigma(b) + \sigma(ca)d(b) - \sigma(c)d(ab)
\]
\[
= d(c)\sigma(a)\sigma(b) + \sigma(c)d(a)\sigma(b) + \sigma(ca)d(b) - \sigma(c)d(ab)
\]
\[
= d(c)\sigma(a)\sigma(b) + \sigma(c)d(a)\sigma(b) + \sigma(ca)d(b)
\]
\[
= d(c)\sigma(a)\sigma(b) + \sigma(c)d(a)\sigma(b) + \sigma(ca)d(b)
\]
\[
-\sigma(c)(d(a)\sigma(b) + \sigma(a)d(b)),
\]
whence
\[
d(c)((\sigma(ab) - \sigma(a)\sigma(b)) = (\sigma(ca) - \sigma(c)\sigma(a))d(b).
\]

Lemma 2.3. Let \(\mathcal{A} \) and \(\mathcal{B} \) be normed algebras, let \(\sigma : \mathcal{A} \to \mathcal{B} \) be a continuous mapping and let \(d : \mathcal{A} \to \mathcal{B} \) be a \(\sigma \)-derivation. Then for each \(a \in \mathcal{S}(d) \) and \(b, c \in \mathcal{A} \) we have \(a(\sigma(bc) - \sigma(b)\sigma(c)) = 0 \).

Proof. For each \(a \in \mathcal{S}(d) \) there exists a sequence \(\{a_n\} \) such that \(a_n \to 0 \) and \(d(a_n) \to a \). By Lemma 2.2 we have
\[
d(a_n)(\sigma(bc) - \sigma(b)\sigma(c)) = (\sigma(a_nb) - \sigma(a_n)\sigma(b))d(c) \to 0.
\]
Thus \(a(\sigma(bc) - \sigma(b)\sigma(c)) = 0 \).

Remark 2.4. Recall that if \(E \) is a subset of an algebra \(\mathcal{B} \), the right annihilator \(ran(E) \) of \(E \) (resp. the left annihilator \(lan(E) \) of \(E \)) is defined to be \(\{ b \in \mathcal{B} : Eb = \{ 0 \} \} \) (resp. \(\{ b \in \mathcal{B} : bE = \{ 0 \} \} \)). The set \(ann(E) := ran(E) \cap lan(E) \) is called the annihilator of \(E \). The previous lemma shows that if \(\mathcal{A} \) and \(\mathcal{B} \) are Banach algebras, \(\sigma : \mathcal{A} \to \mathcal{B} \) is a continuous linear mapping, \(d : \mathcal{A} \to \mathcal{B} \) is a \(\sigma \)-derivation and \(ran(\mathcal{S}(d)) = \{ 0 \} \), then \(\sigma \) is an endomorphism, and if
\[
lan(\{ \sigma(bc) - \sigma(b)\sigma(c) : b, c \in \mathcal{A} \}) = \{ 0 \},
\]
then \(d \) is continuous.

Proposition 2.5. Suppose that \(\mathcal{A} \) is a Banach algebra, \(\mathcal{B} \) is a simple Banach algebra, \(\sigma : \mathcal{A} \to \mathcal{B} \) is a surjective continuous linear mapping and \(d : \mathcal{A} \to \mathcal{B} \) is a \(\sigma \)-derivation. Then \(d \) is continuous or \(\sigma \) is an endomorphism.

Proof. At first we show that \(\mathcal{S}(d) \) is a closed bi-ideal of \(\mathcal{B} \). To see this let \(b \in \mathcal{B} \) and \(a \in \mathcal{S}(d) \). Then there is a sequence \(\{a_n\} \) such that \(a_n \to 0 \) and \(d(a_n) \to a \). Since \(\sigma \) is surjective, there is an element \(c \in \mathcal{A} \) such that \(b = \sigma(c) \). Now we have \(ca_n \to 0 \) and \(d(ca_n) = d(c)\sigma(a_n) + \sigma(c)d(a_n) \to 0 \). This shows that \(ba \in \mathcal{S}(d) \). By the same way \(ab \in \mathcal{S}(d) \). Thus \(\mathcal{S}(d) \) is a bi-ideal.

\(\mathcal{S}(d) \) is \(\{ 0 \} \) or \(\mathcal{B} \). If \(\mathcal{S}(d) = \{ 0 \} \), then \(d \) is continuous, and if \(\mathcal{S}(d) = \mathcal{B} \), then \(\mathcal{S}(d) \) has zero right annihilator and so, by Remark 2.4, \(\sigma \) is an endomorphism.

The following example yields a continuous \(\sigma \)-derivation with a non-continuous linear mapping \(\sigma \).
Example 2.6. Let $A = C[0, 2]$, the C^*-algebra of all complex-valued continuous functions defined on the interval $[0, 2]$. Define the continuous function $h : [0, 2] \to \mathbb{C}$ by $h(t) = 0$ on $[0, 1]$ and $h(t) = t - 1$ on $[1, 2]$, define the linear mapping $\sigma : A \to A$ by

$$\sigma(f)(t) = \begin{cases}
\alpha(f|_{[0,1/2]})(t) & \text{if } 0 \leq t \leq \frac{1}{2}, \\
2(1-t)\alpha(f|_{[0,1/2]})(\frac{1}{2}) + (t - \frac{1}{2})f(1) & \text{if } \frac{1}{2} \leq t \leq 1, \\
\frac{1}{2}f(t) & \text{if } 1 \leq t \leq 2,
\end{cases}$$

where α is a discontinuous linear mapping on $C[0, 1/2]$, and define the linear mapping $d : A \to A$ by $d(f) = fh$. For all $t \in [0, 1]$, we have

$$d(fg)(t) = f(t)g(t)h(t) = 0$$

and for all $t \in [1, 2]$,

$$d(fg)(t) = f(t)g(t)h(t) = f(t)h(t)\frac{g(t)}{2}(t) + (\frac{t}{2})g(t)h(t) = d(f)(t)\sigma(g)(t) + \sigma(f)(t)d(g)(t) = (d(f)\sigma(g) + \sigma(f)d(g))(t).$$

In this example if we define Σ on A by $\Sigma(f) = \frac{f}{2}$, then d is a Σ-derivation and Σ is continuous. In the next section we will show that this is true in general, i.e., if d is a continuous \ast-σ-derivation, then we can find a continuous linear mapping Σ such that d is a \ast-Σ-derivation.

3. σ-Derivations on C^*-Algebras

In this section we establish several significant theorems concerning the continuity of σ-derivations on C^*-algebras. Throughout this section, A denotes a C^*-algebra acting on a Hilbert space H, i.e., a closed \ast-subalgebra of the algebra $B(H)$ consisting of all bounded linear mappings on H. In addition, we assume that σ and d are linear mappings of A into $B(H)$.

Our first result states that when we deal with a continuous σ-derivation we may assume that σ is continuous.

Lemma 3.1. Let $d : A \to B$ be a continuous σ-derivation. Then $S(\sigma) \subseteq \text{ann}(d(A))$.

Proof. Assume $A \in S(\sigma)$. Then there is a sequence $\{A_n\}$ in A such that $A_n \to 0$ and $\sigma(A_n) \to A$. For each $B \in A$ we have

$$d(A_nB) = d(A_n)\sigma(B) + \sigma(A_n)d(B) \to d(0)\sigma(B) + Ad(B).$$

Since $d(A_nB) \to d(0)$ and $d(0) = 0$, we obtain $Ad(B) = 0$. Similarly, we can show that $d(B)A = 0$. \qed

Theorem 3.2. Let σ be a linear mapping and let d be a continuous \ast-σ-derivation. Then there is a continuous linear mapping $\Sigma : A \to B(H)$ such that d is a \ast-Σ-derivation.
Thus we can write

\[\text{Proof.} \]

Thus we have proved that

\[A \]

other hand, for each

\[A \]

we can write

\[\text{d} \]

and

\[P \]

\[K \]

\[= () \]

Moreover, \(\Sigma \) is continuous on \(A \). Let \(A_n \in A \) with \(A_n \to 0 \) and \(\Sigma(A_n) \to A \). Then for each \(\ell \in L_0 \) there is a \(B \in A \) and there is an \(h \in H \) such that \(\ell = d(B)(h) \). Thus we can write \(A(\ell) = A(d(B)(h)) = (Ad(B))(h) = 0 \), since \(A \in \text{ann}(d(A)) \). We therefore have \(A = 0 \) on \(L_0 \) and so \(A = 0 \) on \(L \), since \(A \) is continuous. On the other hand, for each \(k \in K \) we have \(0 = \Sigma(A_n)(k) \to A(k) \) and so \(A = 0 \) on \(K \). Thus we have proved that \(A = 0 \) on \(H \). This shows that \(S(\Sigma) = \{0\} \) and so \(\Sigma \) is continuous on \(A \).

\[\text{Theorem 3.3.} \]

Let \(\sigma \) be a \(* \)-linear mapping and let \(d \) be a continuous \(\sigma \)-derivation. Then there is a continuous linear mapping \(\Sigma : A \to B(H) \) such that \(d \) is a \(\Sigma \)-derivation.

\[\text{Proof.} \]

Define the \(\sigma \)-derivation \(d^* : A \to B(H) \) by \(d^*(A) = d(A^*)^\ast \). Let \(L_0 = (\bigcup_{A \in A} d(A)(H)) \cup (\bigcup_{A \in A} d^*(A)(H)) \) and let \(L \) be the closed linear span of \(L_0 \). Then we can write \(H = L \oplus K \), where \(K = L^\perp \). Thus \(0 = \langle d(A^*)(h), k \rangle = \langle h, d^*(A)k \rangle \) and \(0 = \langle d^*(A^*)(h), k \rangle = \langle h, d(A)k \rangle \) for all \(h \in H, k \in K, A \in A \) such that \(K = (\bigcap_{A \in A} \text{ker} d(A)) \cap (\bigcap_{A \in A} \text{ker} d^*(A)) \). Now define \(\Sigma \) on \(A \) by \(\Sigma(A) = \sigma(A)P \) where \(P \) denotes the corresponding projection to \(L \).

Using the same argument in the proof of Theorem 3.2 one can show that both \(d \) and \(d^* \) are \(\Sigma \)-derivations (note that \(d^* \) is a \(\sigma \)-derivation).

\(\Sigma \) is continuous on \(A \). To see this, assume that \(A_n \in A \), \(A_n \to 0 \) and \(\Sigma(A_n) \to A \). Then for each \(\ell \in L_0 \) there is a \(B \in A \) and there is an \(h \in H \) such that \(\ell = d(B)(h) \) or \(\ell = d^*(B)(h) \). Thus we can write \(A(\ell) = A(d(B)(h)) = (Ad(B))(h) = 0 \) or \(A(\ell) = A(d^*(B))(h) = (Ad^*(B))(h) = 0 \), since \(A \in \text{ann}(d(A)) \cap \text{ann}(d^*(A)) \). We therefore have \(A = 0 \) on \(L_0 \) and so \(A = 0 \) on \(L \), since \(A \) is continuous. On the other hand, for each \(k \in K \) we have \(0 = \Sigma(A_n)(k) \to A(k) \) and so \(A = 0 \) on \(K \). Thus we have proved that \(A = 0 \) on \(H \). This shows that \(S(\Sigma) = \{0\} \) and so \(\Sigma \) is continuous on \(A \).

The next two propositions allow us to assume that \(\sigma \) is a homomorphism when we discuss the continuity of \(\sigma \)-derivations.

\[\text{Proposition 3.4.} \]

Let \(\sigma \) be a continuous \(* \)-linear mapping and let \(d \) be a \(\sigma \)-derivation. Then there is a continuous \(* \)-homomorphism \(\Sigma : A \to B(H) \) and a
\[\Sigma\text{-derivation } D : A \to B(H) \text{ such that } D \text{ is continuous if and only if so is } d.\]

Moreover, if \(d\) preserves \(*\), then so does \(D\).

Proof. By Lemma 2.3 for each \(A \in S(d)\) and \(B, C \in A\) we have

\[
(*) \quad A(\sigma(BC) - \sigma(B)\sigma(C)) = 0
\]

Now let \(L_0 = \bigcup_{B,C \in A}(\sigma(BC) - \sigma(B)\sigma(C))(H)\) and let \(L\) be the closed linear span of \(L_0\). Then (*) implies that \(A(L) = 0\) for each \(A \in S(d)\).

We can write \(H = L \oplus K\), where \(K = L^\perp\). For each \(B, C \in A, h \in H\) and \(k \in K\) we have

\[
0 = \langle (\sigma(BC) - \sigma(B)\sigma(C))(h), k \rangle \\
= \langle h, (\sigma(BC) - \sigma(B)\sigma(C))^*(k) \rangle \\
= \langle h, (\sigma(C^*B^*) - \sigma(C)\sigma(B^*))(k) \rangle.
\]

Since \(A\) is a \(*\)-subalgebra of \(B(H)\), we infer that \((\sigma(BC) - \sigma(B)\sigma(C))(k) = 0\) for each \(B, C \in A\) and \(k \in K\). This shows that \(K = \bigcap_{B,C \in A}\ker(\sigma(BC) - \sigma(B)\sigma(C))\).

Now let \(P = P_K\) be the projection corresponding to \(K\). At first we show that \(\sigma(A)P = P\sigma(A)\) for all \(A \in A\). For each \(A, B, C \in A\) and \(k \in K\) we have

\[
(\sigma(BC) - \sigma(B)\sigma(C))\sigma(A)(k) = (\sigma(BC)\sigma(A) - \sigma(B)\sigma(C)\sigma(A))(k) \\
= (\sigma(BCA) - \sigma(BCA))(k) \\
= 0.
\]

This shows that \(\sigma(A)(K) \subseteq K\) and so \(\sigma(A)P = P\sigma(A)\).

By using Lemma 2.2 we get

\[
0 = d(B)(\sigma(CA) - \sigma(C)\sigma(A))(k) = (\sigma(BC) - \sigma(B)\sigma(C))d(A)(k)
\]

for all \(k \in K\). This implies that \(d(A)(k) \in K\) for all \(k \in K\). Hence \(d(A)(K) \subseteq K\) and so \(d(A)P = Pd(A)\).

Now put \(\Sigma(A) = \sigma(A)P\) and \(D(A) = d(A)P\) for all \(A \in A\). First, \(\Sigma\) is a \(*\)-homomorphism. For \(k \in K\) we have

\[
\Sigma(AB)(k) = \sigma(AB)P(k) \\
= \sigma(AB)(k) \\
= \sigma(A)\sigma(B)(k) \\
= \sigma(A)\sigma(B)P^2(k) \\
= \sigma(A)P\sigma(B)P(k) \\
= \Sigma(A)\Sigma(B)(k).
\]

Also, for \(\ell \in L\),

\[
\Sigma(AB)(\ell) = \sigma(AB)P(\ell) = 0 = \sigma(A)P\sigma(B)P(\ell) = \Sigma(A)\Sigma(B)(\ell).
\]

Moreover, \(\Sigma(A^*) = \sigma(A^*)P = \sigma(A)^*P = (P\sigma(A))^* = (\sigma(A)P)^* = \Sigma(A)^*(A \in A)\).
Second, D is a Σ-derivation, since for $A, B \in \mathcal{A}$ and $k \in \mathcal{K}$ we have
\[
D(AB)(k) = d(AB)P(k) = d(AB)(k)
\]
\[
= d(A)\sigma(B)(k) + \sigma(A)d(B)(k)
\]
\[
= d(A)\sigma(B)P^2(k) + \sigma(A)d(B)P^2(k)
\]
\[
= d(A)P\sigma(B)P(k) + \sigma(A)Pd(B)P(k)
\]
\[
= (D(A)\Sigma(B) + \Sigma(A)d(B))(k).
\]
Also, for $\ell \in \mathcal{L}$,
\[
D(AB)(\ell) = d(AB)P(\ell)
\]
\[
= 0
\]
\[
= d(A)P\sigma(B)P(\ell) + \sigma(A)Pd(B)P(\ell)
\]
\[
= (D(A)\Sigma(B) + \Sigma(A)d(B))(\ell).
\]
Moreover, D is continuous if and only if d is also. To show this let D be continuous and $A \in \mathcal{S}(D)$. Then there is a sequence $\{A_n\}$ in \mathcal{A} such that $A_n \to 0$ and $d(A_n) \to A$. By the first paragraph of the proof we know that $A(\mathcal{L}) = 0$, and for $k \in \mathcal{K}$ we have
\[
A(k) = \lim_{n \to \infty} d(A_n)(k) = \lim_{n \to \infty} d(A_n)P(k) = \lim_{n \to \infty} D(A_n)(k) = 0,
\]
since D is continuous.

On the other hand, if d is continuous and $A \in \mathcal{S}(D)$, then there is a sequence $\{A_n\}$ in \mathcal{A} such that $A_n \to 0$ and $D(A_n) \to A$. Obviously for $\ell \in \mathcal{L}$ we have
\[
A(\ell) = \lim_{n \to \infty} D(A_n)(\ell) = \lim_{n \to \infty} d(A_n)P(\ell) = 0,
\]
and for $k \in \mathcal{K}$,
\[
A(k) = \lim_{n \to \infty} D(A_n)(k) = \lim_{n \to \infty} d(A_n)P(k) = \lim_{n \to \infty} d(A_n)(k) = 0,
\]
since d is continuous.

Similarly, one can show that Σ is continuous. If d is a \ast-σ-derivation, then the relation $d(A)P = Pd(A)$ implies that D is also a \ast-Σ-derivation. \hfill \square

Remark 3.5. If \mathcal{A} is a von Neumann algebra and both σ and d are mappings of \mathcal{A} into \mathcal{A}, then, due to the fact that the range projection of every element of \mathcal{A} is in \mathcal{A}, we conclude that the projection P constructed in the proof of Proposition 3.4 belongs to \mathcal{A} and so the ranges of the derivation D and the linear mapping Σ are contained in \mathcal{A}.

Proposition 3.6. Let σ be a continuous linear mapping and let d be a \ast-σ-derivation. Then there is a continuous \ast-homomorphism $\Sigma : \mathcal{A} \to B(\mathcal{H})$ and a \ast-Σ-derivation $D : \mathcal{A} \to B(\mathcal{H})$ such that D is continuous if and only if d is also.

Proof. Define $\sigma^* : \mathcal{A} \to B(\mathcal{H})$ by $\sigma^*(A) = \sigma(A^*)^\ast$. Then d is a σ^*-derivation. Clearly d is a τ-derivation where $\tau = \frac{\sigma + \sigma^*}{2}$ is a continuous \ast-linear mapping. By Proposition 3.4 there exist a continuous \ast-homomorphism Σ and a \ast-Σ-derivation D such that D is continuous if and only if d is also. \hfill \square

The following theorem is an extension of Sakai’s theorem [8] to σ-derivations.
Theorem 3.7. Let σ be a continuous $*$-linear mapping. Then every σ-derivation d is automatically continuous.

Proof. By Proposition 3.4 we may assume that σ is a continuous $*$-homomorphism. Theorem 2.1 implies that d is an ordinary derivation from A into $B(\mathcal{H})$. By the main theorem of [7] we conclude that d is continuous. \hfill \square

Using the same argument as in the proof of Proposition 3.6 we can establish the following theorem:

Theorem 3.8. Let σ be a continuous linear mapping. Then every $*$-σ-derivation is automatically continuous.

4. (σ, τ)-derivations on C^*-algebras

In [3] the authors considered the notion of (σ, τ)-derivation. Assume that A is a $*$-subalgebra of a $*$-algebra B and $\sigma, \tau : A \to B$ are $*$-linear mappings. A linear mapping $d : A \to B$ is called a $*$-(σ, τ)-derivation if d preserves $*$ and $d(ab) = d(a)\sigma(b) + \tau(a)d(b)$ for all $a, b \in A$. Obviously, a $*$-σ-derivation is a $*$-(σ, σ)-derivation.

Theorem 4.1. Let A be a $*$-subalgebra of a $*$-algebra B and $\sigma, \tau : A \to B$ are $*$-linear mappings. Then every $*$-(σ, τ)-derivation $d : A \to B$ is a $*$-$(\frac{\sigma + \tau}{2}, \frac{\sigma + \tau}{2})$-derivation.

Proof. First we show that each $*$-(σ, τ)-derivation is a $*$-(τ, σ)-derivation. We have $d(ab) = d(b^*a^*)^* = (d(b)^*\sigma(a)^*)^* + \tau(b)^*d(a)^* = d(a)\tau(b) + \sigma(a)d(b)$.

Now we conclude that $d(ab) = \frac{1}{2}d(ab) + \frac{1}{2}d(ab) = \frac{1}{2}(d(a)\sigma(b) + \tau(a)d(b)) + \frac{1}{2}(d(a)\tau(b) + \sigma(a)d(b)) = d(a)\frac{\tau + \sigma}{2}(b) + \frac{\tau + \sigma}{2}(a)d(b)$. \hfill \square

The previous theorem enables us to focus on σ-derivations while we deal with $*$-algebras. In particular, by using Theorem 4.1 we obtain the following generalizations of Theorem 3.2 and Theorem 3.7.

Theorem 4.2. Let σ and τ be continuous $*$-linear mappings from a C^*-algebra A acting on a Hilbert space \mathcal{H} into $B(\mathcal{H})$ and let $d : A \to B(\mathcal{H})$ be a continuous $*$-(σ, τ)-derivation. Then there is a continuous linear mapping $\Sigma : A \to B(\mathcal{H})$ such that d is a $*$-Σ-derivation.

Theorem 4.3. If σ and τ are continuous $*$-linear mappings from a C^*-algebra A acting on a Hilbert space \mathcal{H} into $B(\mathcal{H})$, then every $*$-(σ, τ)-derivation $d : A \to B(\mathcal{H})$ is automatically continuous.

Acknowledgement

The authors would like to sincerely thank the referee for his/her valuable comments and useful suggestions.

References

AUTOMATIC CONTINUITY OF σ-DERIVATIONS ON C^*-ALGEBRAS 3327

Department of Mathematics, Ferdowsi University, P.O. Box 1159, Mashhad 91775, Iran
E-mail address: mirzavaziri@math.um.ac.ir

Department of Mathematics, Ferdowsi University, P.O. Box 1159, Mashhad 91775, Iran
E-mail address: moslehian@ferdowsi.um.ac.ir