The reduced minimum modulus of Drazin inverses of linear operators on Hilbert spaces

Authors:
Chun-Yuan Deng and Hong-Ke Du

Journal:
Proc. Amer. Math. Soc. **134** (2006), 3309-3317

MSC (2000):
Primary 47A05, 46C07, 15A09

Published electronically:
May 12, 2006

MathSciNet review:
2231916

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we study the reduced minimum modulus of the Drazin inverse of an operator on a Hilbert space and give lower and upper bounds of the reduced minimum modulus of an operator and its Drazin inverse, respectively. Using these results, we obtain a characterization of the continuity of Drazin inverses of operators on a Hilbert space.

**1.**Adi Ben-Israel and Thomas N. E. Greville,*Generalized inverses*, 2nd ed., CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 15, Springer-Verlag, New York, 2003. Theory and applications. MR**1987382****2.**S. L. Campbell (ed.),*Recent applications of generalized inverses*, Research Notes in Mathematics, vol. 66, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**666720****3.**J. Ding and L. J. Huang,*Perturbation of generalized inverses of linear operators in Hilbert spaces*, J. Math. Anal. Appl.**198**(1996), no. 2, 506–515. MR**1376277**, 10.1006/jmaa.1996.0095**4.**Dragan S. Djordjević and Yimin Wei,*Additive results for the generalized Drazin inverse*, J. Aust. Math. Soc.**73**(2002), no. 1, 115–125. MR**1916312**, 10.1017/S1446788700008508**5.**Hong-Ke Du and Chun-Yuan Deng,*A new characterization of gaps between two subspaces*, Proc. Amer. Math. Soc.**133**(2005), no. 10, 3065–3070. MR**2159786**, 10.1090/S0002-9939-05-07849-4**6.**Hong-Ke Du and Chun-Yuan Deng,*The representation and characterization of Drazin inverses of operators on a Hilbert space*, Linear Algebra Appl.**407**(2005), 117–124. MR**2161918**, 10.1016/j.laa.2005.04.030**7.**Robert E. Hartwig, Guorong Wang, and Yimin Wei,*Some additive results on Drazin inverse*, Linear Algebra Appl.**322**(2001), no. 1-3, 207–217. MR**1804521**, 10.1016/S0024-3795(00)00257-3**8.**Tosio Kato,*Perturbation theory for linear operators*, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR**0203473****9.**Angus Ellis Taylor and David C. Lay,*Introduction to functional analysis*, 2nd ed., John Wiley & Sons, New York-Chichester-Brisbane, 1980. MR**564653****10.**G. Wang, Y. Wei, S. Qiao, Generalized inverses: Theory and Computions, Science Press, Beijing, New York, 2004.**11.**Yimin Wei and Guoliang Chen,*Perturbation of least squares problem in Hilbert spaces*, Appl. Math. Comput.**121**(2001), no. 2-3, 177–183. MR**1830868**, 10.1016/S0096-3003(99)00271-4**12.**Yimin Wei and Sanzheng Qiao,*The representation and approximation of the Drazin inverse of a linear operator in Hilbert space*, Appl. Math. Comput.**138**(2003), no. 1, 77–89. MR**1950346**, 10.1016/S0096-3003(02)00100-5**13.**Yimin Wei,*A characterization and representation of the generalized inverse 𝐴⁽²⁾_{𝑇,𝑆} and its applications*, Linear Algebra Appl.**280**(1998), no. 2-3, 87–96. MR**1645022**, 10.1016/S0024-3795(98)00008-1**14.**Yimin Wei,*A characterization and representation of the Drazin inverse*, SIAM J. Matrix Anal. Appl.**17**(1996), no. 4, 744–747. MR**1410699**, 10.1137/S0895479895280697**15.**Liping Zhang,*A characterization of the Drazin inverse*, Linear Algebra Appl.**335**(2001), 183–188. MR**1850823**, 10.1016/S0024-3795(01)00274-9**16.**Chao Zhu, Jing Cai, and Guo-liang Chen,*Perturbation analysis for the reduced minimum modulus of bounded linear operator in Banach spaces*, Appl. Math. Comput.**145**(2003), no. 1, 13–21. MR**2005984**, 10.1016/S0096-3003(02)00434-4

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
47A05,
46C07,
15A09

Retrieve articles in all journals with MSC (2000): 47A05, 46C07, 15A09

Additional Information

**Chun-Yuan Deng**

Affiliation:
College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China

Email:
cy-deng@263.net

**Hong-Ke Du**

Affiliation:
College of Mathematics and Information Science, Shaanxi Normal University, Xi’an 710062, People’s Republic of China

Email:
hkdu@snnu.edu.cn

DOI:
https://doi.org/10.1090/S0002-9939-06-08377-8

Keywords:
Drazin inverse,
reduced minimum modulus,
gap between two subspaces

Received by editor(s):
May 11, 2005

Received by editor(s) in revised form:
May 31, 2005

Published electronically:
May 12, 2006

Additional Notes:
This research was partially supported by the National Natural Science Foundation of China (10571113).

Communicated by:
Joseph A. Ball

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.