Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Nonlinear Cauchy problems with small analytic data

Author: Hideshi Yamane
Journal: Proc. Amer. Math. Soc. 134 (2006), 3353-3361
MSC (2000): Primary 35A05, 35L70
Published electronically: May 12, 2006
MathSciNet review: 2231920
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the lifespan of solutions to fully nonlinear Cauchy problems with small real- or complex-analytic data. Our proofs are based on the method of majorants and the fixed point theorem for a contraction mapping.

References [Enhancements On Off] (What's this?)

  • 1. D'Ancona P. and Spagnolo S., Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108(1992), 247-262. MR 1161092 (93h:35131)
  • 2. Georgiev V., ``Semilinear hyperbolic equations'', Mathematical Society of Japan, Tokyo, 2000. MR 1807081 (2001k:35003)
  • 3. Daniel G. and Mustapha M., Problème de Cauchy pour des equations de Kirchhoff generalisées, Comm. Partial Differential Equations, 23(1998), 761-776. MR 1632815 (99c:35160)
  • 4. Hörmander L., ``Lectures on nonlinear hyperbolic differential equations'', Springer-Verlag, Berlin, Heidelberg, 1997. MR 1466700 (98e:35103)
  • 5. Kichenassamy S., ``Nonlinear wave equations'', Marcel Dekker, New York, 1996. MR 1362547 (96j:35001)
  • 6. Wagschal C., Le Problème de Goursat non linéaire, J. Math. Pures Appl., 58(1979), 309-337. MR 0544256 (82m:35024)
  • 7. Wakabayashi S., The Lax-Mizohata theorem for nonlinear Cauchy problems, Comm. Partial Differential Equations, 26(2001), 1367-1384. MR 1855282 (2002j:35073)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35A05, 35L70

Retrieve articles in all journals with MSC (2000): 35A05, 35L70

Additional Information

Hideshi Yamane
Affiliation: Department of Physics, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyougo 669-1337, Japan

Keywords: Nonlinear wave equations, analytic functions
Received by editor(s): November 23, 2004
Received by editor(s) in revised form: June 6, 2005
Published electronically: May 12, 2006
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society