Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A spectral countability condition for almost automorphy of solutions of differential equations

Authors: Nguyen Van Minh, Toshiki Naito and Gaston Nguerekata
Journal: Proc. Amer. Math. Soc. 134 (2006), 3257-3266
MSC (2000): Primary 47D06; Secondary 34G10, 45M05
Published electronically: May 12, 2006
MathSciNet review: 2231910
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the almost automorphy of bounded mild solutions to equations of the form

$\displaystyle (*)\quad\qquad\qquad\qquad\qquad\qquad dx/dt = A(t)x + f(t) \quad\qquad\qquad\qquad\qquad\qquad\qquad $

with (generally unbounded) $ \tau$-periodic $ A(\cdot )$ and almost automorphic $ f(\cdot )$ in a Banach space $ \mathbb{X}$. Under the assumption that $ \mathbb{X}$ does not contain $ c_0$, the part of the spectrum of the monodromy operator associated with the evolutionary process generated by $ A(\cdot )$ on the unit circle is countable. We prove that every bounded mild solution of $ (*)$ on the real line is almost automorphic.

References [Enhancements On Off] (What's this?)

  • 1. W. Arendt, C.J.K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001. MR 1886588 (2003g:47072)
  • 2. B. Basit, Generalization of two theorems of M. I. Kadets concerning the indefinite integral of abstract almost periodic functions, Mat. Zametki 9 (1971), 311-321. (Russian) MR 0284562 (44:1787)
  • 3. B. Basit, A. J. Pryde, Ergodicity and stability of orbits of unbounded semigroup representations. J. Aust. Math. Soc. 77 (2004), 209-232. MR 2083746 (2005g:47073)
  • 4. A. Berger, S. Siegmund, Y. Yi, On almost automorphic dynamics in symbolic lattices. Ergodic Theory Dynam. Systems 24 (2004), 677-696. MR 2060993 (2005b:37018)
  • 5. R. Chill, J. Prüss, Asymptotic behaviour of linear evolutionary integral equations. Integral Equations Operator Theory 39 (2001), 193-213. MR 1817657 (2001m:45015)
  • 6. T. Diagana, G. N'guérekata, Nguyen Van Minh, Almost automorphic solutions of evolution equations. Proc. Amer. Math. Soc. 132 (2004), 3289-3298. MR 2073304 (2005d:34124)
  • 7. D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., Springer-Verlag, Berlin-New York, 1981. MR 0610244 (83j:35084)
  • 8. Y. Hino, S. Murakami, Almost automorphic solutions for abstract functional differential equations. J. Math. Anal. Appl. 286 (2003), 741-752. MR 2008862 (2004i:34160)
  • 9. Y. Hino, T. Naito, N.V. Minh, J.S. Shin, Almost Periodic Solutions of Differential Equations in Banach Spaces. Taylor & Francis, London - New York, 2002. MR 1933682 (2003i:34115)
  • 10. B.M. Levitan, V.V. Zhikov, Almost Periodic Functions and Differential Equations, Moscow Univ. Publ. House, 1978. English translation by Cambridge University Press, 1982. MR 0690064 (84g:34004)
  • 11. J. Liu, G. N'Guérékata, Nguyen van Minh, A Massera type theorem for almost automorphic solutions of differential equations. J. Math. Anal. Appl. 299 (2004), no. 2, 587-599. MR 2098262 (2005f:34163)
  • 12. T. Naito, Nguyen Van Minh, R. Miyazaki, Y. Hamaya, Boundedness and almost periodicity dynamical systems, Journal of Difference Equations and Applications 7 (2001), 507-528. MR 1922587 (2003g:39008)
  • 13. G. M. N'Guérékata, Almost automorphic functions and applications to abstract evolution equations, Contemporary Math. 252 (1999), 71-76. MR 1747279 (2001a:34097)
  • 14. G. M. N'Guérékata Almost Automorphic and Almost Periodic Functions in Abstract Spaces, Kluwer, Amsterdam, 2001. MR 1880351 (2003d:43001)
  • 15. G. M. N'Guérékata, Topics in Almost Automorphy, Springer, New York, 2005. MR 2107829 (2005h:34153)
  • 16. W.M. Ruess, Q.P. Vu, Asymptotically almost periodic solutions of evolution equations in Banach spaces, J. Differential Equations 122 (1995), 282-301. MR 1355893 (96i:34143)
  • 17. W. Shen, Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows, Memoirs of the Amer. Math. Soc. 136 (1998). MR 1445493 (99d:34088)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47D06, 34G10, 45M05

Retrieve articles in all journals with MSC (2000): 47D06, 34G10, 45M05

Additional Information

Nguyen Van Minh
Affiliation: Department of Mathematics, University of West Georgia, Carrollton, Georgia 30118

Toshiki Naito
Affiliation: Department of Mathematics, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

Gaston Nguerekata
Affiliation: Department of Mathematics, Morgan State University, 1700 E. Cold Spring Lane, Baltimore, Maryland 21251

Keywords: Evolution equation, mild solution, almost automorphy, uniform spectrum
Received by editor(s): May 18, 2005
Published electronically: May 12, 2006
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society