On the boundaries of self-similar tiles in

Author:
Xing-Gang He

Journal:
Proc. Amer. Math. Soc. **134** (2006), 3163-3170

MSC (2000):
Primary 28A80, 05B45

Published electronically:
June 5, 2006

MathSciNet review:
2231899

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of this note is to study the construction of the boundary of a self-similar tile, which is generated by an iterated function system . We will show that the boundary has complicated structure (no simple points) in general; however, it is a regular fractal set.

**[B]**Christoph Bandt,*Self-similar sets. V. Integer matrices and fractal tilings of 𝑅ⁿ*, Proc. Amer. Math. Soc.**112**(1991), no. 2, 549–562. MR**1036982**, 10.1090/S0002-9939-1991-1036982-1**[F]**Kenneth Falconer,*Techniques in fractal geometry*, John Wiley & Sons, Ltd., Chichester, 1997. MR**1449135****[GH]**Karlheinz Gröchenig and Andrew Haas,*Self-similar lattice tilings*, J. Fourier Anal. Appl.**1**(1994), no. 2, 131–170. MR**1348740**, 10.1007/s00041-001-4007-6**[HL]**X.G. HE AND K.S. LAU,*On a generalized dimension of self-affine fractals*, Preprint.**[HLR]**Xing-Gang He, Ka-Sing Lau, and Hui Rao,*Self-affine sets and graph-directed systems*, Constr. Approx.**19**(2003), no. 3, 373–397. MR**1979057**, 10.1007/s00365-002-0515-0**[K]**Richard Kenyon,*Self-replicating tilings*, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 239–263. MR**1185093**, 10.1090/conm/135/1185093**[LR]**Ka-Sing Lau and Hui Rao,*On one-dimensional self-similar tilings and 𝑝𝑞-tiles*, Trans. Amer. Math. Soc.**355**(2003), no. 4, 1401–1414 (electronic). MR**1946397**, 10.1090/S0002-9947-02-03207-5**[LW]**Jeffrey C. Lagarias and Yang Wang,*Tiling the line with translates of one tile*, Invent. Math.**124**(1996), no. 1-3, 341–365. MR**1369421**, 10.1007/s002220050056**[LW1]**Jeffrey C. Lagarias and Yang Wang,*Self-affine tiles in 𝑅ⁿ*, Adv. Math.**121**(1996), no. 1, 21–49. MR**1399601**, 10.1006/aima.1996.0045**[LW2]**Jeffrey C. Lagarias and Yang Wang,*Integral self-affine tiles in 𝐑ⁿ. I. Standard and nonstandard digit sets*, J. London Math. Soc. (2)**54**(1996), no. 1, 161–179. MR**1395075**, 10.1112/jlms/54.1.161**[LW3]**Jeffrey C. Lagarias and Yang Wang,*Integral self-affine tiles in 𝑅ⁿ. II. Lattice tilings*, J. Fourier Anal. Appl.**3**(1997), no. 1, 83–102. MR**1428817**, 10.1007/s00041-001-4051-2**[O]**A. M. Odlyzko,*Nonnegative digit sets in positional number systems*, Proc. London Math. Soc. (3)**37**(1978), no. 2, 213–229. MR**507604**, 10.1112/plms/s3-37.2.213**[PSS]**Yuval Peres, Wilhelm Schlag, and Boris Solomyak,*Sixty years of Bernoulli convolutions*, Fractal geometry and stochastics, II (Greifswald/Koserow, 1998) Progr. Probab., vol. 46, Birkhäuser, Basel, 2000, pp. 39–65. MR**1785620****[S]**E. Seneta,*Nonnegative matrices and Markov chains*, 2nd ed., Springer Series in Statistics, Springer-Verlag, New York, 1981. MR**719544****[SW]**Robert S. Strichartz and Yang Wang,*Geometry of self-affine tiles. I*, Indiana Univ. Math. J.**48**(1999), no. 1, 1–23. MR**1722192**, 10.1512/iumj.1999.48.1616**[T]**W. THURSTON,*Group tilings, and finite state automata*, AMS Colloquium Lecture Notes, 1989.**[V]**Andrew Vince,*Digit tiling of Euclidean space*, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 329–370. MR**1798999****[X]**Y. XU,*Fractals and Tilings*, Ph.D. Thesis, University of Pittsburgh 2000.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
28A80,
05B45

Retrieve articles in all journals with MSC (2000): 28A80, 05B45

Additional Information

**Xing-Gang He**

Affiliation:
Department of Mathematics, Central China Normal University, Wuhan, 430079, People’s Republic of China

Email:
xingganghe@sina.com

DOI:
https://doi.org/10.1090/S0002-9939-06-08643-6

Keywords:
Box dimension,
Hausdorff dimension,
self-similar set,
self-similar tile,
iterated function system.

Received by editor(s):
April 14, 2005

Published electronically:
June 5, 2006

Additional Notes:
This research was supported in part by SRF for ROCS(SEM)

Communicated by:
Michael T. Lacey

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.