Khovanov-Jacobsson numbers and invariants of surface-knots derived from Bar-Natan's theory

Author:
Kokoro Tanaka

Journal:
Proc. Amer. Math. Soc. **134** (2006), 3685-3689

MSC (2000):
Primary 57Q45; Secondary 57M25

Published electronically:
May 18, 2006

MathSciNet review:
2240683

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Khovanov introduced a cohomology theory for oriented classical links whose graded Euler characteristic is the Jones polynomial. Since Khovanov's theory is functorial for link cobordisms between classical links, we obtain an invariant of a surface-knot, called the *Khovanov-Jacobsson number*, by considering the surface-knot as a link cobordism between empty links. In this paper, we study an extension of the Khovanov-Jacobsson number derived from Bar-Natan's theory, and prove that any -knot has trivial Khovanov-Jacobsson number.

**1.**Dror Bar-Natan,*On Khovanov’s categorification of the Jones polynomial*, Algebr. Geom. Topol.**2**(2002), 337–370 (electronic). MR**1917056**, 10.2140/agt.2002.2.337**2.**Dror Bar-Natan,*Khovanov’s homology for tangles and cobordisms*, Geom. Topol.**9**(2005), 1443–1499. MR**2174270**, 10.2140/gt.2005.9.1443**3.**J. Scott Carter and Masahico Saito,*Knotted surfaces and their diagrams*, Mathematical Surveys and Monographs, vol. 55, American Mathematical Society, Providence, RI, 1998. MR**1487374****4.**J. S. Carter, M. Saito and S. Satoh,*Ribbon-moves for 2-knots with 1-handles attached and Khovanov-Jacobsson numbers,*to appear in Proc. Amer. Math. Soc. (math.GT/0407493).**5.**Fujitsugu Hosokawa and Akio Kawauchi,*Proposals for unknotted surfaces in four-spaces*, Osaka J. Math.**16**(1979), no. 1, 233–248. MR**527028****6.**Fujitsugu Hosokawa, Tōru Maeda, and Shin’ichi Suzuki,*Numerical invariants of surfaces in 4-space*, Math. Sem. Notes Kobe Univ.**7**(1979), no. 2, 409–420. MR**557313****7.**Magnus Jacobsson,*An invariant of link cobordisms from Khovanov homology*, Algebr. Geom. Topol.**4**(2004), 1211–1251 (electronic). MR**2113903**, 10.2140/agt.2004.4.1211**8.**Mikhail Khovanov,*A categorification of the Jones polynomial*, Duke Math. J.**101**(2000), no. 3, 359–426. MR**1740682**, 10.1215/S0012-7094-00-10131-7**9.**Mikhail Khovanov,*An invariant of tangle cobordisms*, Trans. Amer. Math. Soc.**358**(2006), no. 1, 315–327. MR**2171235**, 10.1090/S0002-9947-05-03665-2**10.**M. Khovanov,*Link homology and Frobenius extensions,*preprint (math.QA/0411447).**11.**Eun Soo Lee,*An endomorphism of the Khovanov invariant*, Adv. Math.**197**(2005), no. 2, 554–586. MR**2173845**, 10.1016/j.aim.2004.10.015**12.**J. A. Rasmussen,*Khovanov homology and the slice genus,*preprint (math.GT/0402131).**13.**J. A. Rasmussen,*Khovanov's invariant for closed surfaces,*preprint (math.GT/0502527).**14.**K. Tanaka,*Khovanov-Jacobsson numbers and invariants of surface-knots derived from Bar-Natan's theory,*pre-publication version (math.GT/0502371).**15.**S. M. Wehrli,*Khovanov homology and Conway mutation,*preprint (math.GT/0301312).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
57Q45,
57M25

Retrieve articles in all journals with MSC (2000): 57Q45, 57M25

Additional Information

**Kokoro Tanaka**

Affiliation:
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro, Tokyo 153-8914, Japan

Email:
k-tanaka@ms.u-tokyo.ac.jp

DOI:
https://doi.org/10.1090/S0002-9939-06-08397-3

Keywords:
Khovanov cohomology,
surface-knot,
Khovanov-Jacobsson number

Received by editor(s):
March 14, 2005

Received by editor(s) in revised form:
June 14, 2005

Published electronically:
May 18, 2006

Communicated by:
Ronald A. Fintushel

Article copyright:
© Copyright 2006
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.