Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Equivalence of domains arising from duality of orbits on flag manifolds II


Author: Toshihiko Matsuki
Journal: Proc. Amer. Math. Soc. 134 (2006), 3423-3428
MSC (2000): Primary 14M15, 22E15, 22E46, 32M05
Published electronically: May 31, 2006
MathSciNet review: 2240651
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: S. Gindikin and the author defined a $ G_{\mathbb{R}}$- $ K_{\mathbb{C}}$ invariant subset $ C(S)$ of $ G_{\mathbb{C}}$ for each $ K_{\mathbb{C}}$-orbit $ S$ on every flag manifold $ G_{\mathbb{C}}/P$ and conjectured that the connected component $ C(S)_0$ of the identity would be equal to the Akhiezer-Gindikin domain $ D$ if $ S$ is of nonholomorphic type. This conjecture was proved for closed $ S$ in the works of J. A. Wolf, R. Zierau, G. Fels, A. Huckleberry and the author. It was also proved for open $ S$ by the author. In this paper, we prove the conjecture for all the other orbits when $ G_{\mathbb{R}}$ is of non-Hermitian type.


References [Enhancements On Off] (What's this?)

  • [A] K. Aomoto, On some double coset decompositions of complex semi-simple Lie groups, J. Math. Soc. Japan 18 (1966), 1-44. MR 0191994 (33:221)
  • [AG] D. N. Akhiezer and S. G. Gindikin, On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990), 1-12. MR 1032920 (91a:32047)
  • [B] L. Barchini, Stein extensions of real symmetric spaces and the geometry of the flag manifold, Math. Ann. 326 (2003), 331-346. MR 1990913 (2004d:22007)
  • [FH] G. Fels and A. Huckleberry, Characterization of cycle domains via Kobayashi hyperbolicity, Bull. Soc. Math. France 133 (2005), 121-144.MR 2145022
  • [GM1] S. Gindikin and T. Matsuki, Stein extensions of Riemannian symmetric spaces and dualities of orbits on flag manifolds, Transform. Groups 8 (2003), 333-376. MR 2015255 (2005b:22017)
  • [GM2] S. Gindikin and T. Matsuki, A remark on Schubert cells and the duality of orbits on flag manifolds, J. Math. Soc. Japan 57 (2005), 157-165. MR 2114726 (2005j:14070)
  • [H] A. Huckleberry, On certain domains in cycle spaces of flag manifolds, Math. Ann. 323 (2002), 797-810. MR 1924279 (2003g:32037)
  • [M1] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331-357. MR 0527548 (81a:53049)
  • [M2] T. Matsuki, Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima Math. J. 12 (1982), 307-320. MR 0665498 (83k:53072)
  • [M3] T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of minimal parabolic subgroups, Adv. Stud. Pure Math. 14 (1988), 541-559. MR 1039852 (91c:22014)
  • [M4] T. Matsuki, Closure relations for orbits on affine symmetric spaces under the action of parabolic subgroups. Intersections of associated orbits, Hiroshima Math. J. 18 (1988), 59-67.MR 0935882 (89f:53073)
  • [M5] T. Matsuki, Stein extensions of Riemann symmetric spaces and some generalization, J. Lie Theory 13 (2003), 563-570. MR 2003160 (2004i:53062)
  • [M6] T. Matsuki, Equivalence of domains arising from duality of orbits on flag manifolds, Trans. Amer. Math. Soc. 358 (2006), 2217-2245. MR 2197441
  • [M7] T. Matsuki, Equivalence of domains arising from duality of orbits on flag manifolds III, preprint (RT/0410302).
  • [R] W. Rossmann, The structure of semisimple symmetric spaces, Canad. J. Math. 31 (1979), 157-180. MR 0518716 (81i:53042)
  • [Sp] T. A. Springer, Some results on algebraic groups with involutions, Adv. Stud. Pure Math. 6 (1984), 525-534. MR 0803346 (86m:20050)
  • [V] D. A. Vogan, Irreducible characters of semisimple Lie groups III, Invent. Math. 71 (1983), 381-417. MR 0689650 (84h:22036)
  • [WW] R. O. Wells and J. A. Wolf, Poincaré series and automorphic cohomology on flag domains, Ann. of Math. 105 (1977), 397-448. MR 0447645 (56:5955)
  • [WZ1] J. A. Wolf and R. Zierau, Linear cycle spaces in flag domains, Math. Ann. 316 (2000), 529-545. MR 1752783 (2001g:32054)
  • [WZ2] J. A. Wolf and R. Zierau, A note on the linear cycle spaces for groups of Hermitian type, J. Lie Theory 13 (2003), 189-191. MR 1958581 (2004a:22015)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 14M15, 22E15, 22E46, 32M05

Retrieve articles in all journals with MSC (2000): 14M15, 22E15, 22E46, 32M05


Additional Information

Toshihiko Matsuki
Affiliation: Department of Mathematics, Faculty of Science, Kyoto University, Kyoto 606-8502, Japan
Email: matsuki@math.kyoto-u.ac.jp

DOI: http://dx.doi.org/10.1090/S0002-9939-06-08406-1
PII: S 0002-9939(06)08406-1
Keywords: Flag manifolds, symmetric spaces, Stein extensions
Received by editor(s): January 20, 2004
Received by editor(s) in revised form: June 29, 2005
Published electronically: May 31, 2006
Communicated by: Dan M. Barbasch
Article copyright: © Copyright 2006 American Mathematical Society