Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Morava $ K$-theory rings for the dihedral, semidihedral and generalized quaternion groups in Chern classes


Authors: Malkhaz Bakuradze and Vladimir Vershinin
Journal: Proc. Amer. Math. Soc. 134 (2006), 3707-3714
MSC (2000): Primary 55N20, 55R12, 55R40
Published electronically: June 28, 2006
MathSciNet review: 2240687
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Morava $ K$-theory rings of classifying spaces of the dihedral, semidihedral and generalized quaternion groups are presented in terms of Chern classes.


References [Enhancements On Off] (What's this?)

  • 1. M. Bakuradze : Morava $ K$-theory rings for the modular groups in Chern classes, $ K$-Theory, to appear.
  • 2. M. Bakuradze, S. Priddy : Transfer and complex oriented cohomology rings, Algebraic $ \& $ Geometric Topology 3(2003), 473-509. MR 1997326 (2004m:55007)
  • 3. M. Bakuradze, S. Priddy : Transfered Chern classes in Morava $ K$-theory, Proc. Amer. Math. Soc., 132(2004), 1855-1860.MR 2051151 (2005a:55017a)
  • 4. K. Broto, V. V. Vershinin : On the generalized homology of Artin groups. (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 266 (2000), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 5, 7-12, 336; translation in J. Math. Sci. (NY) 113 (2003), no. 4, 545-547. MR 1774644 (2001f:20077)
  • 5. M. Brunetti : Morava $ K$-theory of $ p$-groups with cyclic maximal subgroups and other related $ p$-groups, $ K$-Theory 24, (2001), 385-395. MR 1885128 (2003a:55007)
  • 6. A. Dold : The fixed point transfer of fibre-preserving maps, Math. Zeit. 148 (1976), 215 - 244. MR 0433440 (55:6416)
  • 7. M. Hopkins, N. Kuhn, and D. Ravenel : Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 3 (2000), 553-594.MR 1758754 (2001k:55015)
  • 8. D. S. Kahn, S.B. Priddy : Applications of the transfer to stable homotopy theory, Bull Amer. Math. Soc. 78 (1972), 981-987.MR 0309109 (46:8220)
  • 9. D. Ravenel : Complex cobordism and Stable Homotopy Groups of Spheres, Academic Press, (1986). MR 0860042 (87j:55003)
  • 10. B. Schuster : On the Morava $ K$-theory of some finite $ 2$-groups, Math. Proc. Camb. Phil. Soc. 121 (1997), 7-13. MR 1418356 (97i:55008)
  • 11. M. Tezuka and N. Yagita : Cohomology of finite groups and Brown-Peterson cohomology, Algebraic Topology Arcata 1986, Springer, LNM 1370 (1989), 396-408. MR 1000392 (90i:55011)
  • 12. N. Yagita : Complex $ K$-theory of $ BSL_3(Z)$, $ K$-Theory 6 (1992), 87-95. MR 1186775 (94a:19008)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 55N20, 55R12, 55R40

Retrieve articles in all journals with MSC (2000): 55N20, 55R12, 55R40


Additional Information

Malkhaz Bakuradze
Affiliation: Razmadze Institute of Mathematics, Tbilisi, 0193, Republic of Georgia
Email: maxo@rmi.acnet.ge

Vladimir Vershinin
Affiliation: Département des Sciences Mathématiques, Université Montpellier II, 34095 Montpellier cedex 05, France
Address at time of publication: Sobolev Institute of Mathematics, Novosibirsk, 630090, Russia
Email: vershini@math.univ-montp2.fr, versh@math.nsc.ru

DOI: http://dx.doi.org/10.1090/S0002-9939-06-08424-3
PII: S 0002-9939(06)08424-3
Keywords: Transfer, formal group law, Chern class
Received by editor(s): October 6, 2004
Received by editor(s) in revised form: July 7, 2005
Published electronically: June 28, 2006
Additional Notes: The first author was supported by INTAS 03-51-3251 and GRDF GEM1-3330-TB-03 grants
The second author was supported by CNRS-NSF and INTAS 03-51-3251 grants
Communicated by: Paul Goerss
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.