Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Fixed points of univalent functions II

Author: Gerald Schmieder
Journal: Proc. Amer. Math. Soc. 134 (2006), 3605-3611
MSC (2000): Primary 30C35, 30D40
Published electronically: June 9, 2006
MathSciNet review: 2240673
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a closed nowhere dense subset $ C$ of $ \partial\mathbb{D}$ a bounded univalent holomorphic function $ f$ on $ \mathbb{D}$ is found such that $ C$ equals the cluster set of its fixed points.

References [Enhancements On Off] (What's this?)

  • 1. Collingwood, E.F., Lohwater, A.J.: The theory of cluster sets. Cambridge University Press, Cambridge 1966. MR 0231999 (38:325)
  • 2. Doppel, K., Köditz, H., Timmann, S.: Bemerkungen über Fixpunktmengen schlichter Funktionen. Rend. Ist. di Matem. Univ. di Trieste vol. VII, fasc. II (1976), 161-165. MR 0463424 (57:3375)
  • 3. Gaier, D.: Lectures on complex approximation (translated from the german). Birkhäuser, Boston-Basel-Stuttgart 1987. MR 0894920 (88i:30059b)
  • 4. Gharibyan, T., Schmieder, G.: Fixed Points of Univalent Funktions. Computational Methods and Function Theory 3 (2003), 299-304. MR 2082019 (2005d:30049)
  • 5. Ohtsuka, M.: Dirichlet problem, extremal length and prime ends. Van Nostrand, London-Toronto-Melbourne 1970.
  • 6. Pommerenke, C.: Univalent functions. Vandenhoeck & Ruprecht, Göttingen 1975. MR 0507768 (58:22526)
  • 7. Schmieder, G.: Fusion lemma and boundary structure. J. Approx. Theory 71 (1992), 305-311. MR 1191577 (94a:30032)
  • 8. Schmieder, G., Shiba, M.: Über ein Lemma der komplexen Approximationstheorie. Manuscripta Math. 65 (1989), 447-464. MR 1019702 (90j:30064)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 30C35, 30D40

Retrieve articles in all journals with MSC (2000): 30C35, 30D40

Additional Information

Gerald Schmieder
Affiliation: Fakultät V, Institut für Mathematik, Universität Oldenburg, D-26111 Oldenburg, Germany

Keywords: Univalent functions, fixed points, cluster set
Received by editor(s): December 14, 2004
Received by editor(s) in revised form: June 30, 2005
Published electronically: June 9, 2006
Dedicated: To my friend Masakazu Shiba on the occasion of his 60th birthday
Communicated by: Juha M. Heinonen
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society