GIBBS’ PHENOMENON AND SURFACE AREA

L. DE MICHELE AND D. ROUX

Abstract. If a function f is of bounded variation on T^N ($N \geq 1$) and $\{\varphi_n\}$ is a positive approximate identity, we prove that the area of the graph of $f \ast \varphi_n$ converges from below to the relaxed area of the graph of f. Moreover we give asymptotic estimates for the area of the graph of the square partial sums of multiple Fourier series of functions with suitable discontinuities.

1. Introduction

Let T be the one-dimensional torus. In a recent paper \cite{5}, R. S. Strichartz discussed the asymptotic behaviour of the length l of the graph of the convolution product $f \ast \varphi_n$, where $f \in L^1(T)$ and $\{\varphi_n\}$ is a sequence of kernels.

For partial sums $s_n(f)$ of Fourier series he proved that if f is a continuous piecewise C^1 function

$$\lim_{n \to +\infty} l(s_n(f)) = l(f)$$

and if f is a piecewise C^1 function with a finite number of jump discontinuities,

$$l(s_n(f)) = O(\log n).$$

Moreover, if $\{\varphi_n\}$ is a positive approximate identity in L^1 and f is a function of bounded variation, Strichartz proved that the length of the graph of $f \ast \varphi_n$ converges from below to the length of the graph of f, defined as the sum of the length of the graph of the continuous part of f and the sum of the essential jumps of f.

In this paper, we study the same problems on the N-dimensional torus (for $N \geq 1$).

Although summation methods are very relevant for convergence problems, it is easy to see that (Proposition 1) if f is a Lipschitz function, then for every summation method the area A of the graph of the partial sums of the Fourier series of f converges to the area $A(f)$ of the graph of f, as in the one-dimensional case.

On the other hand, if f is the characteristic function of a set E in R^n with sufficiently smooth boundary and D^N_n is the N-dimensional Dirichlet kernel, we prove that, as in the one-dimensional case,

$$A(\chi_E \ast D^N_n) = O(\log n).$$

Finally we prove that if $\{\varphi_n\}$ is a positive approximate identity and f is a function of bounded variation (see e.g. \cite{1}), the Lebesgue area $A(f \ast \varphi_n)$ of the
graph of the continuous function $f \ast \varphi_n$ converges from below to the relaxed area (see e.g. [3]) $\overline{A}(f)$ of the graph of f.

Moreover if f is a nonbounded variation L^1-function, then $\overline{A}(f \ast \varphi_n)$ diverges as $n \to +\infty$. Therefore f is of bounded variation if and only if $\overline{A}(f \ast \varphi_n)$ is uniformly bounded.

These results extend some old results in the 2-dimensional case due to C. Goffman [4] to the case of a general positive approximate identity. As far as we know, no other result was proved in the N-dimensional case.

The techniques in the proof of Goffman are strictly connected to the particular form of φ_n and to the various notions of area used in the fifties for L^1 functions. These techniques do not seem to work in the general case.

2. The Results

Let $x = (x_1, \ldots, x_N) \in T^N$ (the N-dimensional torus) and let $\{I_n\}$ be a sequence of finite subset of Z^N such that $I_n \subseteq I_{n+1}$ and $\bigcup_n I_n = \mathbb{Z}^N$. Set

$$D_{I_n}(x) = \sum_{k \in I_n} e^{ikt}, \quad t \in \mathbb{T}^N, \ k = (k_1, \ldots, k_N) \text{ and } kt = \sum_{i=1}^N k_it_i.$$

If $f : \mathbb{T}^N \to \mathbb{R}$ is a Lipschitz function, we denote by $A(f)$ the area of the graph of f (see e.g. [2]). We have the following proposition.

Proposition 1. If $f : \mathbb{T}^N \to \mathbb{R}$ is a Lipschitz function, then

$$\lim_{n \to +\infty} A(f \ast D_{I_n}) = A(f). \quad (2.1)$$

If f has some jump discontinuities we have the Gibbs’ phenomenon; the oscillations of $f \ast D_{I_n}$ are uniformly bounded, but this is no longer true for the area of the graph.

Indeed, let

$$E_1 = [a, b], \quad 0 \leq a < b \leq 2\pi,$$

and for $i = 2, \ldots, n$

$$E_i = \{(x_1, \ldots, x_i) : (x_1, \ldots, x_{i-1}) \in E_{i-1}, \quad g_{i-1}(x_1, \ldots, x_{i-1}) \leq x_i < h_{i-1}(x_1, \ldots, x_{i-1})\},$$

where $g_i, h_i : E_{i-1} \to [0, 2\pi]$ belong to $C^1(E_{i-1})$, and $g_i(x_1, \ldots, x_{s-1}, \bullet, x_{s+1}, \ldots, x_{i-1}), h_i(x_1, \ldots, x_{s-1}, \bullet, x_{s+1}, \ldots, x_{i-1})$ are monotone functions with respect to x_s for $s = 1, 2, \ldots, i-1$. Moreover, for convenience, let us set $E_n = E$. Then, if

$$D_n^N(x) = D_n^N(x_1, x_2, \ldots, x_N) = \prod_{j=1}^N D_n^1(x_j) = \prod_{j=1}^N \prod_{p=-n}^n e^{ipx_j},$$

the following theorem holds true.

Theorem 1. If χ_E is the characteristic function of E, then

$$A(\chi_E \ast D_n^N) = O(\log n). \quad (2.2)$$

Remark. This estimate depends heavily on the summation method used. Indeed from the proof of the theorem it is easy to see that, if for example $N = 2$ and $D_2(x_1, x_2) = D_2(x_1)D_2(x_2)$, we have

$$A(\chi_E \ast D_n^2) = O(n).$$
For convenience, we recall that \(\{\varphi_n\}_{n=1}^{\infty} \) is a positive approximate identity in \(L^1(T^N) \) if for every \(n \)
\[
\varphi_n(x) \geq 0 \text{ a.e., } \quad \int_{T^N} \varphi_n(x) \, dx = 1,
\]
and moreover for every open set \(E \) containing the point zero
\[
\lim_{n \to \infty} \int_E \varphi_n(x) \, dx = 0.
\]
We also recall that \(f \in L^1(T^N) \) is said to be of bounded variation in \(T^N \) if the distributional derivative \(\nabla f = (D_1 f, \ldots, D_N f) \) is represented by a finite Radon measure in \(T^N \), i.e. if
\[
\int_{T^N} \frac{\partial \phi}{\partial x_i} \, dx = -\int_{T^N} \phi \, dD_i f \quad \forall \phi \in C^\infty(T^N), \quad i = 1, \ldots, N,
\]
and the relaxed area of \(f \) is given by
\[
\bar{A}(f) = \int_{T^N} \left(1 + |\nabla_a f|^2 \right)^{1/2} \, dx + \|\nabla_s f\|_{M(T^N)}
\]
where \(\nabla_a \) and \(\nabla_s \) are, respectively, the absolutely continuous and the singular part of the distributional derivative of \(f \) and \(\|\cdot\|_{M(T^N)} \) is the norm of the vector-valued finite measures on \(T^N \).

Then we have the following result.

Theorem 2. If \(f : T^N \to \mathbb{R} \) is a bounded variation function and \(\{\varphi_n\} \) is a positive approximate unit, then for every \(n \)
\[
A(f * \varphi_n) \leq \bar{A}(f) \tag{2.3}
\]
and
\[
\lim_{n \to \infty} A(f * \varphi_n) = \bar{A}(f). \tag{2.4}
\]

If \(f \in L^1(T^N) \) is not bounded variation we have the following.

Proposition 2. If \(f \in L^1(T^N) \) is not bounded variation, then for every subsequence \(\{f * \varphi_{n_h}\} \) of bounded variation functions we have
\[
\lim_{h \to \infty} \bar{A}(f * \varphi_{n_h}) = +\infty. \tag{2.5}
\]

Indeed, the functional relaxed area is lower semicontinuous in \(L^1 \) and \(\bar{A}(f) = +\infty \).

3. Proofs

Proof of Proposition 1. We have
\[
|A(f * D_{I_n}) - A(f)| = \left| \int_{T^N} \left(1 + |\nabla(f * D_{I_n})|^2 \right)^{1/2} - \left(1 + |\nabla f|^2 \right)^{1/2} \, dx \right|
\]
where \(|\cdot| \) is the euclidean norm. Since \(y \mapsto (1 + y^2)^{1/2} \) is a Lipschitz function
\[
|A(f * D_{I_n}) - A(f)| \leq \int_{T^N} |\nabla(f * D_{I_n}) - \nabla f| \, dx
= \|\nabla(f * D_{I_n}) - \nabla f\|_1 \leq (2\pi)^N \|\nabla(f * D_{I_n}) - \nabla f\|_2
= (2\pi)^N \|\nabla f * D_{I_n} - \nabla f\|_2,
\]

where \(\| \|_1 \) and \(\| \|_2 \) are respectively the \(L^1 \) and the \(L^2 \) norm of vector-valued functions. Because the last term by Plancherel goes to zero, Proposition 1 follows.

Proof of Theorem 1. We have

\[
H^{(n)}(x_1, \ldots, x_N) = \chi_E * D_n^N(x)
\]

\[
= \int_E D_n(x_1 - u_1) \cdot \ldots \cdot D_n(x_N - u_N) du_1 \ldots du_N
\]

\[
= \int_a^b D_n(x_1 - u_1) du_1 \cdot \int_{g_1(x_1)}^{h_1(x_1)} D_n(x_2 - u_2) du_2
\]

\[
\ldots \cdot \int_{g_{i-1}(x_1, \ldots, x_{i-1})}^{h_{i-1}(x_1, \ldots, x_{i-1})} D_n(x_i - u_i) du_i \ldots \int_{g_{N-1}(x_1, \ldots, x_{N-1})}^{h_{N-1}(x_1, \ldots, x_{N-1})} D_n(x_N - u_N) du_N
\]

\[
= H_1^{(n)}(x_1) \cdot H_2^{(n)}(x_1, x_2) \ldots \cdot H_i^{(n)}(x_1, \ldots, x_i) \ldots \cdot H_N^{(n)}(x_1, \ldots, x_N).
\]

Then

\[
\frac{\partial}{\partial x_i} H^{(n)} = \sum_{k=1}^N \frac{\partial}{\partial x_i} H_k^{(n)} \prod_{j=1, j \neq k}^N H_j^{(n)}.
\]

Since for every \(c, d, 0 \leq c < d \leq 2\pi \),

\[
\left| \int_c^d D_n(y) dy \right| < K
\]

uniformly with respect to \(c, d \) and \(n \), we have

\[
\left\| \frac{\partial}{\partial x_i} H^{(n)} \right\|_1 = O \left(\left\| \sum_{k=1}^N \frac{\partial}{\partial x_i} H_k^{(n)} \right\|_1 \right).
\]

Now we give an estimate of \(\frac{\partial}{\partial x_i} H_k^{(n)} (i \leq k) \). We have

\[
\frac{\partial}{\partial x_i} H_k^{(n)}(x_1, \ldots, x_k) = D_n(x_k - h_{k-1}(x_1, \ldots, x_{k-1})) \cdot \frac{\partial}{\partial x_i} h_{k-1}(x_1, \ldots, x_{k-1})
\]

\[
- D_n(x_k - g_{k-1}(x_1, \ldots, x_{k-1})) \cdot \frac{\partial}{\partial x_i} g_{k-1}(x_1, \ldots, x_{k-1})
\]

\[
- \delta_{i,k} \{ D_n(x_k - h_{k-1}(x_1, \ldots, x_{k-1})) - D_n(x_k - g_{k-1}(x_1, \ldots, x_{k-1})) \},
\]

where \(\delta_{i,k} \) is the Kronecker symbol.

The \(L^1 \) norm of every term of (3.2) is \(O(\log n) \). Indeed

\[
\int_{T^N} |D_n(x_k - h_{k-1}(x_1, \ldots, x_{k-1}))| \cdot \left| \frac{\partial}{\partial x_i} h_{k-1}(x_1, \ldots, x_{k-1}) \right| dx_1 \ldots dx_N
\]

\[
\leq \int_{T^N} |D_n(t_k - t_i)| dt_1 \ldots dt_N
\]

\[
= \int_{T^{N-1}} dt_1 \ldots dt_{k-1} \cdot dt_{k+1} \ldots dt_N \int_T |D_n(t_k - t_i)| dt_k
\]

\[
= O(\log n).
\]
Trivially a similar estimate holds for the last term in (3.2). Therefore, by (3.1) and (3.2) we obtain
\[
\left\| \frac{\partial}{\partial x_i} H^{(n)}(x_1, \ldots, x_N) \right\|_1 = O(\log n)
\]
for every \(i = 1, \ldots, N\). Since
\[
A(\chi_{\mathcal{E}} \ast D_n^N) = \int_{T^N} \left\{ 1 + |\nabla (f \ast D_n^N)|^2 \right\}^{1/2} \, dx_1 \ldots dx_N,
\]
Theorem 1 easily follows. \(\square\)

Proof of Theorem 2. Since \(f\) is bounded and the translation in \(L^1\) is continuous, we have
\[
f \ast \varphi_n \in C^0(T^N).
\]
Moreover, the distributional derivative \(\nabla (f \ast \varphi_n)\) is a vector-valued \(L^1\)-function, because \(\nabla (f \ast \varphi_n) = \nabla f \ast \varphi_n\) and \(\nabla f\) is a vector-valued finite measure.

Then \(f \ast \varphi_n \in W^{1,1}\) and its graph has finite Lebesgue area given by
\[
A(f \ast \varphi_n) = \int_{T^N} \left(1 + |\nabla f \ast \varphi_n|^2 \right)^{1/2} \, dx,
\]
where \(\cdot\) is the euclidean norm in \(\mathbb{R}^N\).

We have
\[
A(f \ast \varphi_n) = \int_{T^N} \left(1 + |(\nabla_a f + \nabla_s f) \ast \varphi_n|^2 \right)^{1/2} \, dx.
\]
From the trivial inequality
\[
(1 + (a + b)^2)^{1/2} \leq (1 + a^2)^{1/2} + |b|, \quad a, b \in \mathbb{R},
\]
we have
\[
A(f \ast \varphi_n) \leq \int_{T^N} \left(1 + |\nabla_a f \ast \varphi_n|^2 \right)^{1/2} \, dx + \int_{T^N} |\nabla_s f \ast \varphi_n| \, dx
\]
\[
\leq \int_{T^N} \left(1 + |\nabla_a f \ast \varphi_n|^2 \right)^{1/2} \, dx + \|\nabla_s f\|_{M(T^N)}
\]
\[
= I + \|\nabla_s f\|_{M(T^N)}.
\]

We now prove that
\[
I \leq \int_{T^N} \left(1 + |\nabla_a f|^2 \right)^{1/2} \, dx.
\]
Minkowski’s inequality implies that
\[
I \leq \int_{T^N} \left(1 + (|\nabla_a f| \ast \varphi_n)^2 \right)^{1/2} \, dx.
\]
Moreover, by the Jensen inequality we have a.e.
\[
(1 + (|\nabla_a f| \ast \varphi_n)^2)^{1/2}(x) \leq \int_{T^N} \left(1 + |\nabla_a f(t - x)|^2 \right)^{1/2} \varphi_n(t) \, dt.
\]
By integration of both terms of (3.5) and using Fubini’s theorem, we obtain
\[
I \leq \int_{T_N} dt \int_{T_N} \left(1 + |\nabla_a f(t-x)|^2 \right)^{1/2} \varphi_n(t) \, dx \\
\leq \int_{T_N} \varphi_n(t) \, dt \int_{T_N} \left(1 + |\nabla_a f(x)|^2 \right)^{1/2} \, dx \\
= \int_{T_N} \left(1 + |\nabla_a f|^2 \right)^{1/2} \, dx
\]
and we have (3.4). Then (2.3) follows by (3.3) and (3.4).

Since the functional relaxed area is lower semicontinuous in L^1, (2.4) follows immediately by (2.3). □

References

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via R. Cozzi 53, 20126 Milano, Italia

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano-Bicocca, via R. Cozzi 53, 20126 Milano, Italia