CONTINUOUSLY EXTENDING PARTIAL FUNCTIONS

PHILLIP ZENOR

(Communicated by Alan Dow)

Abstract. We characterize those Hausdorff spaces in which continuous functions defined on compact subsets can be continuously extended to continuous functions defined on the space.

1. Introduction

$C(X)$ will denote the set of continuous real valued functions defined on the space X. T_{norm} will denote the norm topology on $C(X)$, while T_{co} will denote the compact-open topology on $C(X)$. Let $K(X)$ denote the space of compact subsets of X endowed with the Vietoris topology. Each function in $C_K(X) = \{f \in C(H) : H \in K(X)\}$ is identified with its graph so that $C_K(X)$ is a subspace of $K(X \times \mathbb{R})$. The space $C_K(X)$ was first studied by Kuratowski in [5], [6]. In [4], the author shows that if X is a compact metric space, then there is a continuous function $e : C_K(X) \to (C(X), T_{\text{norm}})$ such that $ef(x) = f(x)$ for all $x \in \text{Domain}(f)$. (We will call such a function e an extender.) In [4], Stepanova defines a separating function to be a function $\varphi : X^2 \setminus \Delta \to C(X)$ such that $\varphi(x, y)(x) \neq \varphi(x, y)(y)$ and proves that the following conditions are equivalent for a paracompact p-space X:

1. X admits a continuous separating function $\varphi : X^2 \setminus \Delta \to (C(X), T_{\text{norm}})$,
2. there is a continuous extender $e : C_K(X) \to (C(X), T_{\text{norm}})$, and
3. X is metrizable.

(Paracompact p-spaces can be characterized as those spaces that admit perfect maps onto metric spaces [1].)

In [4], it is shown that if X is metrizable, then there is a continuous extender $e : C_K(X) \to (C(X), T_{\text{norm}})$ that is linear on functions with common domains.

Definition 1. A function $f : X \to C(Y)$ can be thought of as a function $\varphi_f : X \times Y \to \mathbb{R}$, defined by $\varphi_f(x, y) = [f(x)](y)$. We will say that $f : X \to C(Y)$ is naturally continuous if $\varphi_f : X \times Y \to \mathbb{R}$ is continuous. Unless otherwise stated, we will think of a separating function for X as a function $\varphi : (X^2 \setminus \Delta) \times X \to \mathbb{R}$ such that $\varphi(x, y, x) \neq \varphi(x, y, y)$.

Received by the editors January 1, 2004 and, in revised form, July 15, 2005.

2000 Mathematics Subject Classification. Primary 54D15, 54C20, 54C30.

If $\{U_1, \ldots, U_n\}$ is a finite collection of open subsets of X, then the set $\{U_1, \ldots, U_n\} = \{H \in K(X) : H \subset \bigcup_{i=1}^{m} U_i, \text{ and if } 1 \leq i \leq n, \text{ then } H \cap U_i \neq \emptyset\}$ is a basic open set for the Vietoris topology on $K(X)$.

©2006 American Mathematical Society
Reverts to public domain 28 years from publication
Proposition 2. If \(f : X \to (C(Y), \mathcal{T}_{\text{norm}}) \) is continuous, then \(\varphi_f : X \times Y \to \mathcal{R} \) is continuous. We will see in Proposition 1 that if \(\varphi_f : X \times Y \to \mathcal{R} \) is continuous, then \(f : X \to (C(Y), \mathcal{T}_{\text{co}}) \) is continuous.

In \[3\], \(X \) is defined to be continuously Urysohn if \(X \) admits a continuous separating function \(f : X^2 \setminus \Delta \to (C(X), \mathcal{T}_{\text{norm}}) \).

Definition 2. We will say that \(X \) is weakly continuously Urysohn if \(X \) admits a continuous separating function \(\varphi : (X^2 \setminus \Delta) \times X \to \mathcal{R} \).

The main result of this paper is the following.

Theorem 1. The following conditions are equivalent on the Hausdorff space \(X \):

1. \(X \) is weakly continuously Urysohn,
2. there is a naturally continuous extender \(e : C_K(X) \to C(X) \), and
3. there is a naturally continuous extender \(e : C_K(X) \to C(X) \) such that if \(\text{Domain}(f) = \text{Domain}(g) \) and \(f(x) \leq g(x) \) for all \(x \in \text{Domain}(f) \), then \(ef(x) \leq eg(x) \) for all \(x \in X \).

2. Background, constructions and proofs

If \(U \subset Y \) and \(V \subset \mathcal{R} \), then we will let \([U,V] = \{ f \in C(Y) : f(U) \subset V \} \).

Proposition 1. A function \(f : X \to (C(Y), \mathcal{T}_{\text{co}}) \) is continuous provided that the function \(\varphi_f : X \times Y \to \mathcal{R} \) is continuous.

Proof. Suppose that \(\varphi_f : X \times Y \to \mathcal{R} \) is continuous, \(x \in X \) and \([K,W] \) is a sub-basic member of \(\mathcal{T}_{\text{co}} \) containing \(f(x) \). For each \(k \in K \), there are open sets \(U_k \) in \(X \) and \(V_k \) in \(Y \) such that \(x \in U_k \), \(k \in V_k \), and \(\varphi_f(U_k \times V_k) \subset W \). There is a finite subset \(\{k_1, \ldots, k_n\} \) of \(K \) such that \(\{V_{k_1}, \ldots, V_{k_n}\} \) covers \(K \). It follows that if \(x' \in \bigcap \{U_{k_1}, \ldots, U_{k_n}\} \), then \(f(x') \in [K,W] \).

Proposition 2. If \(Y \) is locally compact, then \(f : X \to (C(Y), \mathcal{T}_{\text{co}}) \) is continuous if and only if \(\varphi_f : X \times Y \to \mathcal{R} \) is continuous.

Proof. Suppose that \(f : X \to (C(Y), \mathcal{T}_{\text{co}}) \) is continuous. Let \(W \) be an open set in \(\mathcal{R} \) containing \(\varphi_f(x,y) = f(x)(y) \). Since \(f(x) \in C(Y) \), we may let \(V \) be an open set containing \(y \) with compact closure such that \(f(x) \in [V,W] \). Since \(f \) is continuous, there is an open set \(U \) in \(X \) containing \(x \) such that if \(x' \in U \), then \(f(x') \in [V,W] \). Thus, if \((x',y') \in U \times V \), then \(\varphi_f(x',y') = f(x')(y') \in W \). It follows that \(\varphi_f \) is continuous.

Recall that if \(X \) is compact, then the compact-open topology and the norm topology on \(C(X) \) are the same topologies. Thus we have

Theorem 2 (Stepanova \[7\]). The compact space \(X \) is metrizable if and only if \(X \) is weakly continuously Urysohn.

In \[7\], Stepanova points out that a submetrizable space admits a continuous separating function. Indeed, we have the following observation.

Proposition 3. If \(X \) has a zero-set diagonal, then \(X \) is weakly continuously Urysohn.
Proof. Let $\rho : X^2 \to [0, 1]$ be a continuous function such that $\Delta = \rho^{-1}(0)$. Since ρ is continuous,
$$
\varphi(x, y, t) = \frac{1}{2} \left[-\rho(y, t) + \rho(x, t) \frac{(1 - \rho(y, t))}{\rho(x, t) + \rho(y, t)} + 1 \right]
$$
is a continuous function from $(X^2 \setminus \Delta) \times X$ into R such that $\varphi(x, y, x) = 0$ and $\varphi(x, y, y) = 1$.

In [2], Bennett and Lutzer give us an example of a linearly ordered space that is continuously Urysohn but that does not have a G_δ-diagonal.

We let $\mathcal{M}(X) = \{ (H, K) \in K(X) \times K(X) : H \cap K = \emptyset \}$ and $\mathcal{A}(X) = \{ (x, K) \in X \times K(X) : x \notin K \}$.

Lemma 1 (Stepanova [2]). If X admits a continuous separating function $\varphi : (X^2 \setminus \Delta) \times X \to R$, then there is a continuous function $\varphi' : (X^2 \setminus \Delta) \times X \to [0, 1]$ such that $\varphi'(x, y, x) = 0$ and $\varphi'(x, y, y) = 1$.

Lemma 2. If X admits a continuous separating function $\varphi : (X^2 \setminus \Delta) \times X \to R$, then there is a continuous function $\tilde{\varphi} : M(X) \times X \to [0, 1]$ such that

1. if $x \in H$, then $\tilde{\varphi}(H, K, x) = 0$, and if $x \in K$, then $\tilde{\varphi}(H, K, x) = 1$, and
2. if (H, K) and $(H', K') \in M(X)$ with $H \in H'$ and $K' \subseteq K$, then $\tilde{\varphi}(H', K', x) \leq \tilde{\varphi}(H, K, x)$.

Proof. By Lemma 1 we may assume that $0 \leq \varphi(x, y, t) \leq 1$, $\varphi(x, y, x) = 0$, and $\varphi(x, y, y) = 1$.

Define $\varphi_1 : A(X) \times X \to R$ by $\varphi_1(x, H, t) = \max\{ \varphi(x, y, t) : y \in H \}$.

Clearly, $\varphi_1(x, H, H) = 0$. If $t \in H$, then $\varphi_1(x, H, t) = 1$, and if $H \subseteq K$, then $\varphi_1(x, H, t) \leq \varphi_1(x, K, t)$. We will show that φ_1 is continuous.

Let $\varepsilon > 0$ and let $W = (\varphi_1(x_0, K_0, t_0) - \varepsilon, \varphi_1(x_0, K_0, t_0) + \varepsilon)$. For each $y \in K_0$ there are open sets O_y, Λ_y, and Ω_y containing x_0, y, and t_0, respectively, such that if $x' \in O_y$, $y' \in \Lambda_y$, and $t' \in \Omega_y$, then $\varphi(x', y', t') \in (\varphi(x_0, y_0, t_0) - \varepsilon, \varphi(x_0, y_0, t_0) + \varepsilon)$. Since K_0 is compact, there is a finite subset $\{y_1, \ldots, y_n\} \subseteq K_0$ such that $\{\Lambda_{y_1}, \ldots, \Lambda_{y_n}\}$ covers K. We may assume that $\varphi_1(x_0, K_0, t_0) = \varphi(x_0, y_0, t_0)$. Let $O = \bigcap_{i=1}^n O_{y_i}$, $\Lambda = \bigcap_{i=1}^n \Lambda_{y_i}$, and $\Omega = \bigcap_{i=1}^n \Omega_{y_i}$. Let $(x', K', t') \in O \times \Lambda \times \Omega$. Then $\varphi_1(x', t') \geq \varphi(x', t') \geq \varphi(x_0, k_1, t_0) - \varepsilon = \varphi_1(x_0, y_0, t_0) - \varepsilon$. Now, let $k \in K'$ be such that $\varphi(x', k, t') = \varphi_1(x', K', t')$. Then $k \in \Lambda_{y_i}$ for some $1 \leq i \leq n$. We have $\varphi(x', k, t') \leq \varphi(x_0, y_i, t_0) + \varepsilon \leq \varphi(x_0, y_i, t_0) + \varepsilon = \varphi_1(x_0, K_0, t_0) + \varepsilon$.

We now define $\tilde{\varphi}(H, K, t) = \min\{ \varphi_1(x, K, t) : x \in H \}$. We need only show that $\tilde{\varphi}$ is continuous. To this end, let $\varepsilon > 0$. For each $x \in H$, there are open sets U_x in X containing x, V_x in $K(X)$ containing K, and Δ_x containing t such that if $(x', K', t') \in U_x \times V_x \times \Delta_x$, $\varphi_1(x, K, t) - \varepsilon < \varphi_1(x', K', t') < \varphi_1(x, K, t) + \varepsilon$. There is a finite set $\{x_1, \ldots, x_n\} \subseteq H$ such that $\{U_{x_1}, \ldots, U_{x_n}\}$ covers H. We may assume that $\tilde{\varphi}(H, K, t) = \varphi_1(x_1, K, t)$. Let $U = \bigcup_{i=1}^n U_{x_i}$, $V = \bigcup_{i=1}^n V_{x_i}$, and $\Delta = \bigcup_{i=1}^n \Delta_{x_i}$. Let $(H', K', t') \in U \times V \times \Delta$. There is an $x' \in H' \cap U_{x_j}$, and so, $\tilde{\varphi}(H', K', t') \leq \varphi_1(x', K', t') \leq \varphi_1(x_j, K, t) + \varepsilon = \varphi_1(H, K, t) + \varepsilon$. Now, let $x' \in H'$ be such that $\tilde{\varphi}(H', K', t') = \varphi_1(x', H', t')$. Then $x' \in U_{x_j}$ for some j. Thus, $\tilde{\varphi}(H', K', t') = \varphi_1(x', K', t') > \varphi_1(x_j, K, t) - \varepsilon \geq \varphi_1(H, K, t) - \varepsilon$.
Observation 1. It follows from Part 2 of Lemma 2 that if \((H, K, t) \in \mathcal{M}(X) \times X\), and \(\varepsilon > 0\), then

1. there are open sets \(U \times V\) in \(\mathcal{M}(X)\) containing \((H, K)\) and \(W\) containing \(t\) such that if \(\{(A, B), (A', B')\} \subset \mathcal{M}(X)\) with \(A' \subset A\), \(A' \subset U\), \(B' \subset B' \in V\), and \(x \in W\), then \(\varphi(A, B, x) < \varphi(H, K, t) + \varepsilon\) and
2. there are open sets \(U' \times V'\) in \(\mathcal{M}(X)\) containing \((H, K)\) and \(W'\) containing \(t\) such that if \(\{(A, B), (A', B')\} \subset \mathcal{M}(X)\) with \(A \subset A' \subset U'\), \(B' \subset B\), \(B' \in V'\) and \(x \in W'\), then \(\varphi(A, B, x) > \varphi(H, K, t) - \varepsilon\).

Let \(\mathcal{C}_k(X)\) denote the set \(\{f : H \to (0, 1) \mid H \in K(X), f\) is continuous\} endowed with the Vietoris topology.

Lemma 3. Let \(\varphi : \mathcal{M}(X) \times X \to [0, 1]\) be the function \(\bar{\varphi}\) given in Lemma 2. We extend \(\varphi\) so that if \(H \neq \emptyset\), then \(\varphi(\emptyset, H, x) = 1\) and \(\varphi(H, \emptyset, x) = 0\) for all \(x \in X\). Suppose that \(f \in \mathcal{C}_k(X)\), and \(0 < a < b < 1\).

1. If \(f^{-1}[0, a] \neq \emptyset\), \(\varphi(f^{-1}[0, a], f^{-1}[b, 1], x) > \zeta\), and \(\varepsilon > 0\), then there are open sets \(\Gamma\) in \(\mathcal{C}_k(X)\) containing \(f\) and \(O\) in \(X\) containing \(x\) such that if \(a' < b', a' > a + \varepsilon, b' > b + \varepsilon\), \(g \in \Gamma\), and \(x' \in O\), then
 \[\varphi(g^{-1}[0, a'], g^{-1}[b', 1], x') < \zeta;\]

2. If \(f^{-1}[b, 1] \neq \emptyset\), \(\varphi(f^{-1}[0, a], f^{-1}[b, 1], x) > \zeta\), and \(\varepsilon > 0\), then there are open sets \(\Gamma\) in \(\mathcal{C}_k(X)\) containing \(f\) and \(O\) in \(X\) containing \(x\) such that if \(a' < b', a' < a - \varepsilon, b' < b - \varepsilon\), \(g \in \Gamma\), and \(x' \in O\), then
 \[\varphi(g^{-1}[0, a'], g^{-1}[b', 1], x') > \zeta;\]

Proof of Lemma 3(1). Case I: \(f^{-1}[b, 1] = \emptyset\). Let \(c = \sup(f)\) and \(\delta < \frac{1}{2}\min\{\varepsilon, b - c\}\). Then \(\varphi(f^{-1}[0, c], f^{-1}[b, 1], x) = 0\) for all \(x \in X\). Let \((\gamma_1, \ldots, \gamma_k)\) be an open set in \(K(X)\) containing the domain of \(f\) such that \(f^{-1}[0, a] \cap \gamma_1 \neq \emptyset\) and such that if \(\{y, z\} \subset \gamma_1 \cap \text{Domain}(f)\), then \(|f(y) - f(z)| < \delta\). For each \(i \leq k\), choose \(x_i \in \gamma_i \cap \text{Domain}(f)\) such that \(x_i \in f^{-1}[0, a] \) and let \(\gamma_i^* = \gamma_i \times (f(x_i) - \delta, f(x_i) + \delta)\). \(\Gamma = \langle \gamma_1^*, \ldots, \gamma_k^* \rangle\) is an open set in \(\mathcal{C}_k(X)\) containing \(f\).

Let \(g \in \Gamma\). We will show that \(\varphi(g^{-1}[0, a'], g^{-1}[b', 1], x') = 0\) for all \(x' \in X\). First, \(g^{-1}[b', 1] = \emptyset\). To see that this is true, let \((y, g(y)) \in \gamma_i^*\). Then \(g(y) < f(x_i) + \delta \leq c + \delta < b + \varepsilon < b'\). Now, we show that \(g^{-1}[0, a'] \neq \emptyset\). To this end, let \((y, g(y)) \in \gamma_i^*\). Then \(g(y) < f(x_i) + \delta \leq a + \delta < a'\) and \(g^{-1}[0, a'] \neq \emptyset\). We have that \(\varphi(g^{-1}[0, a'], [b', 1], x') = 0\) for all \(x \in X\).

Case II: \(f^{-1}[b, 1] \neq \emptyset\). According to Observation 1, since \(f^{-1}[0, a] \cap f^{-1}[b, 1] = \emptyset\), there are mutually exclusive open sets in \(K(X)\), \(\mathcal{A} = \langle \alpha_1, \ldots, \alpha_n \rangle\) containing \(f^{-1}[0, a]\) and \(\mathcal{B} = \langle \beta_1, \ldots, \beta_n \rangle\) containing \(f^{-1}[b, 1]\), and \(O\), open in \(X\) containing \(x\), such that if \((A', B', x') \in \mathcal{A} \times \mathcal{B} \times O\), \((A,B) \in \mathcal{M}(X)\), and \(A' \subset A\), \(B \subset B'\), then \(\varphi(A, B, x') < \zeta\).

Let \(\delta > 0\) be such that \(2\delta < \varepsilon\), \(f^{-1}[0, a + 2\delta] \in A\), and \(f^{-1}[b - 2\delta, 1] \in B\). Choose open sets in \(X\), \(\langle \gamma_1, \ldots, \gamma_k, \ldots, \gamma_K \rangle\), such that (1) \(\text{Domain}(f) \in \langle \gamma_1, \ldots, \gamma_k \rangle\), (2) \(f^{-1}[0, a] \subset \langle \gamma_1, \ldots, \gamma_k \rangle \subset A\), (3) \(f^{-1}[b, 1] \subset \langle \gamma_k, \ldots, \gamma_K \rangle \subset B\), and (4) if \(t_1\) and \(t_2\) are in \(\text{Domain}(f) \cap \gamma_i\), then \(|f(t_1) - f(t_2)| < \delta/2\).

Let \(g \in \Gamma\). For each \(i \leq k\), choose \(x_i\) in \(\text{Domain}(f) \cap \gamma_i\) such that if \(i \leq k_1\), then \(f(x_i) \leq a\) and if \(i \geq k_2\), then \(f(x_i) \geq b\), and let \(\gamma_i^* = \gamma_i \times (f(x_i) - \delta, f(x_i) + \delta)\). Then \(\Gamma = \langle \gamma_1^*, \ldots, \gamma_k^* \rangle\) is an open set in \(\mathcal{C}_k(X)\) containing \(f\). For each \(i \leq k_1\),
let \(y_i \in \text{Domain}(g) \) such that \((y_i, g(y_i)) \in \gamma_i \) and let \(A' = \{ y_1, \ldots, y_k \} \). Then \(g(y_i) < f(x_i) + \varepsilon < a' \). Thus, \(A' \subseteq g^{-1}[0, a'] \) and \(A' \in \mathcal{A} \). If \(g^{-1}[b', 1] = \emptyset \), then \(\varphi(g^{-1}[0, a'], g^{-1}[b', 1], x') = 0 \) for all \(x' \in X \), and we are done. So let \(y \in g^{-1}[b', 1] \). There is an \(i \) such that \((y, g(y)) \in \gamma_i \). Since \(f(x_i) > g(y) - \varepsilon \geq b' - \delta > b \), \(i \geq k_2 \), and there is an integer \(j \) such that \(y \in \beta_j \). Therefore, if we let \(B' = \{ x_{k_j}, \ldots, x_k \} \cup g^{-1}[b', 1] \), then \(g^{-1}[b', 1] \subset B' \in \mathcal{B} \). We have that if \(g \in \Gamma \) and \(x' \in O \), then \(\varphi(g^{-1}[0, a'], g^{-1}[b', 1], x') < \zeta \).

The proof of Lemma 3(2) follows in the same way.

A construction: Let \(\varphi : \mathcal{M}(X) \times X \to [0, 1] \) be as given in Lemma 3(2). For convenience, if \(H \neq \emptyset \), then we define \(\varphi(\emptyset, H, x) = 1 \), and \(\varphi(H, \emptyset, x) = 0 \). For \(f \in \mathcal{C}_N(X) \), \(z \in [0, 1] \), and \(n \in N \), define

\[
\begin{align*}
\mathcal{F}_{f,n,z}(x) &= \begin{cases}
\varphi(f^{-1}[0, z], f^{-1}[z + 1/n, 1], x), & \text{if } f^{-1}[0, z] \neq \emptyset, \\
1, & \text{otherwise},
\end{cases} \\
\mathcal{T}_{f,n,z}(x) &= \begin{cases}
\varphi(f^{-1}[0, z - 1/n], f^{-1}[z, 1], x), & \text{if } f^{-1}[z, 1] \neq \emptyset, \\
0, & \text{otherwise},
\end{cases} \\
U_{f,n,z} &= \{ x, f_{n,z}(x) < z/n \}, \\
V_{f,n,z} &= \{ x, f_{n,z}(x) > 1 - 1/n + z/n \}.
\end{align*}
\]

We define \(W_{f,z} = \bigcup_{l \in N} (U_{f,l,z} \setminus \mathcal{T}_{f,l,z}) \). Then \(W_{f,z} \) is an open set containing \(f^{-1}[0, z] \) and \(\mathcal{U}_{f,z} = \emptyset \).

Note that (1) if \(z_1 < z_2 \), then \(\mathcal{F}_{f,n,z_1}(x) \leq \mathcal{F}_{f,n,z_2}(x) \) and \(\mathcal{T}_{f,n,z_2}(x) \leq \mathcal{T}_{f,n,z_1}(x) \). Thus, \(\mathcal{U}_{f,n,z_1} \subseteq U_{f,n,z_2} \) and \(\mathcal{T}_{f,n,z_2} \subseteq V_{f,n,z_2} \). (2) If \(z \in [0, 1] \), then \(\mathcal{U}_{f,n+1,z} \subseteq U_{f,n,z} \) and \(\mathcal{T}_{f,n+1,z} \subseteq V_{f,n,z} \). (3) If \(z > \sup(f) \), then \(W_{f,z} = X \). (4) If \(z < \inf(f) \), then \(W_{f,z} = \emptyset \).

Lemma 4. Suppose that \(0 < z_1 < z_2 < 1 \) and \(1/N < (z_2 - z_1)/3 \). Then \(V_{f,N} \cap U_{f,N} = \emptyset \).

Proof. We are given that \(z_1 + 1/N < z_2 - 1/N \). If \(f^{-1}[0, z_1] = \emptyset \), then \(U_{f,N} = \emptyset \). If \(f^{-1}[z_1, 1] = \emptyset \), then \(V_{f,N} = \emptyset \). If \(f^{-1}[0, z_1] \neq \emptyset \) and \(f^{-1}[z_1, 1] \neq \emptyset \), then \(\{ \eta | \varphi(f^{-1}[0, z_1], f^{-1}[z_1 + 1/N, 1], \eta < 1 \} \cap \{ \eta | \varphi(f^{-1}[0, 2z_1 - 1/N], f^{-1}[z_1, 1], \eta) = 0 \} \subset \{ \eta | \varphi(f^{-1}[0, z_1], f^{-1}[z_1 + 1/N, 1], \eta < 1/2N \} \cap \{ \eta | \varphi(f^{-1}[0, 2z_1 - 1/N], f^{-1}[z_1, 1], \eta) > 1 - 1/N + 2z_1/N \} = \emptyset \).

Lemma 5. If \(z_1 < z_2 \), then \(\mathcal{U}_{f,z} \subseteq W_{f,z} \).

Proof. Suppose that \(x \in \mathcal{U}_{f,z} \setminus W_{f,z} \). By Lemma 4 we may let \(N \) denote the first integer such that \(x \notin \mathcal{U}_{f,N} \cap V_{f,N} \). Since \(x \in \mathcal{U}_{f,z} \), \(x \in \mathcal{U}_{f,1,z} \), and \(f^{-1}[0, z] \neq \emptyset \), but, \(f^{-1}[z_1 + 1, 1] = \emptyset \); so, \(U_{f,1} = X \). Since \(x \in X \), \(x \notin \mathcal{U}_{f,z} \). If \(x \notin W_{f,z} \), it must be that \(x \in \mathcal{U}_{f,z} \), and \(f^{-1}[z_1, 1] \neq \emptyset \). Since \(f^{-1}[0, z_2 - 1] = \emptyset \), \(V_{f,z} = X \). Thus, \(N > 1 \).

If \(x \in \mathcal{U}_{f,N} \), then \(x \notin U_{f,N} \), \(x \in V_{f,N} \), and \(x \notin \mathcal{U}_{f,N+1} \). Then \(x \in (V_{f,N} \setminus \mathcal{U}_{f,N+1}) \) and \((V_{f,N} \setminus \mathcal{U}_{f,N+1}) \cap W_{f,z} = \emptyset \), which would be a contradiction. So, \(x \notin \mathcal{U}_{f,N} \). Since \(x \notin W_{f,z} \), \(x \notin U_{f,N} \), and so, \(x \notin \mathcal{U}_{f,N} \). But then \(x \notin (V_{f,N-1} \setminus \mathcal{U}_{f,N-1}) \cap W_{f,z} = \emptyset \), which is a contradiction from which the lemma follows.
Lemma 6. If X is weakly continuously Urysohn, then there is a continuous function $e : C^*_f(X) \times X \to [0,1]$ such that

1. $ef(x) = f(x)$ for all $x \in \text{Domain}(f)$, and
2. if f and g have a common domain and if $f(x) \leq g(x)$ for all $x \in \text{Domain}(f)$, then $ef(x) \leq eg(x)$ for all $x \in X$.

Proof. For $f \in C^*_f(X)$ and $x \in X$, define $ef(x) = \text{glb}\{ z \in [0,1] \mid x \in W_{f,z} \}$. It follows from the construction that $ef : X \to [0,1]$ is an extension of f such that if f and g share a common domain, then $f \leq g$ implies that $ef \leq eg$. Furthermore, the image of ef is contained in the convex hull of the image of f. It is a standard argument that ef is continuous. It remains to show that $e : (C^*_f(X)) \times X \to [0,1]$ is continuous. To this end, let $f \in C^*_f(X)$, $x \in X$, and $\varepsilon > 0$. Let $z = ef(x)$. We will obtain an open set $\Gamma \times O$ in $C^*_f(X) \times X$ containing (f,x) such that if $(g,x') \in \Gamma \times O$, then $|ef(x) - eg(x')| < \varepsilon$.

Part I: First, we obtain an open set $\Gamma_1 \times O_1$ in $C^*_f(X) \times X$ containing (f,x) such that if $(g,x') \in \Gamma_1 \times O_1$ and $z_0 > z'' + \varepsilon' = z + \varepsilon$, then $x' \in W_{g,z_0}$. To this end, choose z' and z'' in $[0,1]$ such that $z < z' < z'' < z + \varepsilon$.

Step A: Let $z' = \varepsilon + z - z''$. Since $V_{f,N,z'} \neq X$, $f^{-1}[0,z'-1/N] \neq \emptyset$ and $f^{-1}[0,z''-1/N] \neq \emptyset$. Then

$$\varphi(f^{-1}[0,z''-1/N],f^{-1}[z'',1],x) \leq \varphi(f^{-1}[0,z'-1/N],f^{-1}[z',1],x) \leq 1 - 1/N + z''/N < 1 - 1/N + z''/N.$$

By Lemma 3 there is an open set $A_1 \times W_1$ in $C^*_f(X) \times X$ containing (f,x) such that if $(g,x') \in A_1 \times W_1$ and $z_0 > z'' + \varepsilon_0 = z + \varepsilon$, then $\varphi(g^{-1}[0,z_0-1/N],g^{-1}[z_0,1],x') < 1 - 1/N + z''/N < 1 - 1/N + z''/N$ and $x' \notin \overline{V}_{g,N,z''}$.

Step B: Let $z'' = \varepsilon + z - z'$. Since $f^{-1}[0,z'-1/N] \neq \emptyset$, $f^{-1}[0,z'] \neq \emptyset$. Since

$$\varphi(f^{-1}[0,z'],f^{-1}[z'+1/N,1],x) \leq \varphi(f^{-1}[0,z'-1/N],f^{-1}[z',1],x) \leq 1 - 1/N + z'/N < 1 - 1/N + z'/N,$$

we may employ Lemma 3 to obtain an open set $A_2 \times U_2$ in $C^*_f(X) \times X$ containing (f,x) such that if $z_0 > z' + \varepsilon_0 = z + \varepsilon$ and $(g,x') \in A_2 \times U_2$, then $\varphi(g^{-1}[0,z_0],g^{-1}[z_0+1/N,1],x') < 1 - 1/N + z'/N < z''/N$ and $x' \notin \overline{V}_{g,N,z''}$. To complete the argument for Part I, let $\Gamma_1 = A_1 \cap A_2$ and $O_1 = U_1 \cap U_2$.

Part II: Second, we find an open set $\Gamma_2 \times O_2$ in $C^*_f(X) \times X$ containing (f,x) such that if $(g,x') \in \Gamma_2 \times O_2$, then $eg(x') \geq z - \varepsilon$; that is, if $z_0 < z - \varepsilon$, then $x' \notin \overline{W}_{g,z_0}$. We consider three cases.

Case A: $f^{-1}[0,z-\varepsilon] = \emptyset$.

Choose z' so that $z - \varepsilon < z' < z$ and $f^{-1}[0,z'] = \emptyset$. Set $2\varepsilon' = z' - (z - \varepsilon)$. Let $\{U_1, ..., U_n\}$ be an irreducible open cover of $f^{-1}[z',1] = \text{Domain}(f)$ such that if $1 \leq i \leq n$ and $\{a,b\} \subset \text{Domain}(f) \cap U_i$, then $|f(a) - f(b)| < \varepsilon'$. For each $1 \leq i \leq n$, choose $x_i \in U_i \cap \text{Domain}(f)$ and let $U_i^* = U_i \times (x_i - \varepsilon', x_i + \varepsilon')$. Then $\Gamma_2 = \langle U_1^*, ..., U_n^* \rangle$ is an open set containing f such that if $g \in \Gamma_2$, $z_0 < z'-\varepsilon' = z-\varepsilon$, and $x' \in X$, then $g^{-1}[0,z_0] = \emptyset$. Letting $O_2 = X$, we have an open set $\Gamma_2 \times O_2$ in $C^*_f(X) \times X$ containing (f,x) such that if $(g,x') \in \Gamma_2 \times O_2$, then $eg(x') \geq z - \varepsilon$.

In both Cases B and C, we will choose z', z'' and z''' in $(0,1)$ such that $z' > z'' > z''' > z - \varepsilon$. Lemma 3 gives us a first integer N such that $x \notin \overline{U}_{f,N,z''} \cap \overline{V}_{f,N,z'}$.

Case B: $f^{-1}[0,z-\varepsilon] \neq \emptyset$ and $x \notin \overline{U}_{f,N,z''} \cap \overline{V}_{f,N,z'}$.

Then $x \notin \overline{U}_{f,N,z''}$ so

$$\varphi(f^{-1}[0,z''],f^{-1}[z''+1/N,1],x) \geq z''/N$$
and $f^{-1}[z'' + 1/N, 1] \neq \emptyset$. It follows that $f^{-1}[z'' + 1/N, 1] \neq \emptyset$ and

$$\varphi(f^{-1}[0, z''], f^{-1}[z'' + 1/N, 1], x) > z''/N > z''/N.$$

We let $\varepsilon' = z'' - (z - \varepsilon)$ and apply Lemma 3 to obtain an open set $\Omega_1 \times V_1$ in $C^*_K(X) \times X$ containing (f, x) such that if $(g, x') \in \Omega_1 \times V_1$ and $z_0 < z'' - \varepsilon' = z - \varepsilon$, then

$$\varphi(g^{-1}[0, z_0], g^{-1}[z_0 + 1/N, 1], x') > z''/N > z_0/N.$$

Now, since $x \in V_{f,N,z''}, x \in V_{f,N,z''}$ and $\varphi(f^{-1}[0, z'' - 1/N], f^{-1}[z''/N, 1], x) > 1 - 1/N + z''/N$. Letting $\epsilon' = z'' - (z - \varepsilon)$, we apply Lemma 3 to obtain an open set $\Omega_2 \times V_2 \subseteq C^*_K(X) \times X$ containing (f, x) such that if $(g, x') \in C^*_K(X) \times X$ and $z_0 < z'' - \varepsilon' = z - \varepsilon$, then $x' \notin U_{g,i,z_0}$ for all $i \geq N$.

To complete Case B, we let $\Gamma_2 = \Omega_1 \cap \Omega_2$ and $O_2 = V_1 \cap V_2$.

Case C: $f^{-1}[0, z - \varepsilon] \neq \emptyset$ and $x \notin V_{f,N,z''}$. Then since $x \notin W_{f,z''}, x \notin U_{f,N,z''}$. Thus, $\varphi(f^{-1}[0, z'], f^{-1}[z' + 1/N, 1], x) \geq z'/N$. It follows that $f^{-1}[z' + 1/N, 1] \neq \emptyset$ and $\varphi(f^{-1}[0, z''], f^{-1}[z' + 1/N], x) \geq z'/N > z''/N$. Again, Lemma 3 gives us an open set $\Omega_1 \times V_1 \subseteq C^*_K(X)$ such that if $(g, x') \in \Omega_1 \times V_1$, then $x' \notin U_{g,N,z_0}$.

Since $f^{-1}[0, z - \varepsilon] \neq \emptyset$ and $f^{-1}[0, z''] \neq \emptyset$, and $U_{f,N,z''} = X$. Similarly, since $f^{-1}[z' + 1/N, 1] \neq \emptyset$, $V_{f,N-1,z''} = X$. Therefore, $N > 1$. By hypothesis, $x' \in V_{f,N-1,z''} \subseteq V_{f,N-1,z''}$. Letting $\varepsilon' = z'' - (z - \varepsilon)$, we employ Lemma 3 to obtain an open set $\Omega_2 \times V_2 \subseteq C^*_K(X) \times X$ such that if $(g, x') \in \Omega_2 \times V_2$ and $z_0 < z'' - \varepsilon' = z - \varepsilon$, then $x' \notin W_{g,z_0}$.

To complete Case C, we let $\Gamma_2 = \Omega_1 \cap \Omega_2$ and $O_2 = V_1 \cap V_2$. To complete the proof of the lemma, we let $\Gamma = \Gamma_1 \cap \Gamma_2$ and $O = O_1 \cap O_2$.

We are now in a position to obtain our main result.

Theorem 1. If X is a Hausdorff space, then the following conditions are equivalent:

1. X is weakly continuously Urysohn.
2. There is a continuous extender $e : C_K(X) \times X \to \mathcal{R}$.
3. There is a continuous extender $e : C_K(X) \times X \to \mathcal{R}$ such that if f and g have a common domain and if $f(x) \leq g(x)$ for all $x \in \text{Domain}(f)$, then $ef(x) \leq eg(x)$ for all $x \in X$.

Proof. Clearly, (3) \Rightarrow (2). We will use a standard argument to show that (1) \Rightarrow (3). Let $e^* : C^*_K(X) \times X \to [0, 1]$ be the extender given in Lemma 3. Let $h : \mathcal{R} \to (0, 1)$ be an order preserving homeomorphism taking \mathcal{R} onto $(0, 1)$. For $f \in C_K(X)$, define $ef = h^{-1}e^* \circ h \circ f$. To obtain (2) \Rightarrow (1), for each $(x, y) \in X^2 \setminus \Delta$ let $\psi_{(x,y)} : \{x, y\} \to [0, 1]$ be defined by $\psi_{(x,y)}(x) = 0$ and $\psi_{(x,y)}(y) = 1$. Let $\varphi(x, y, t) = e\psi_{(x,y)}(t)$.

The author would like to express his appreciation to the referees for their patience with the initial versions of this paper.

References

