Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extensions of endomorphisms of $ C(X)$


Authors: J. F. Feinstein and T. J. Oliver
Journal: Proc. Amer. Math. Soc. 135 (2007), 109-117
MSC (2000): Primary 46J10, 47B48
DOI: https://doi.org/10.1090/S0002-9939-06-08441-3
Published electronically: June 28, 2006
MathSciNet review: 2280180
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a compact space $ X$ we consider extending endomorphisms of the algebra $ C(X)$ to be endomorphisms of Arens-Hoffman and Cole extensions of $ C(X)$. Given a non-linear, monic polynomial $ p\in C(X)[t]$, with $ C(X)[t]/pC(X)[t]$ semi-simple, we show that if an endomorphism of $ C(X)$ extends to the Arens-Hoffman extension with respect to $ p$, then it also extends to the simple Cole extension with respect to $ p$. We show that the converse to this is false. For a locally connected, metric $ X$ we characterize the algebraically closed $ C(X)$ in terms of the extendability of endomorphisms to Arens-Hoffman and to simple Cole extensions.


References [Enhancements On Off] (What's this?)

  • 1. R. Arens and K. Hoffman, Algebraic extension of normed algebras, Proc. Am. Math. Soc. 7 (1956), 203-210. MR 0077901 (17:1113e)
  • 2. B. J. Cole, One-point parts and the peak point conjecture, Ph.D. Thesis, Yale University, 1968.
  • 3. R. S. Countryman, On the characterization of compact Hausdorff $ X$ for which $ C(X)$ is algebraically closed, Pacific J. Math. 20 (1967), 433-448. MR 0208410 (34:8220)
  • 4. T. W. Dawson, A survey of algebraic extensions of commutative, unital normed algebras, Contemp. Math. 328 (2003), 157-170. MR 1990397 (2004e:46059)
  • 5. J. F. Feinstein and H. Kamowitz, Endomorphisms of algebras of infinitely differentiable functions on compact plane sets, J. Funct. Anal. 173 (2000), 61-73. MR 1760278 (2001j:46073)
  • 6. P. Galindo, T. W. Gamelin and M. Lindström, Composition operators on uniform algebras and the pseudohyperbolic metric, J. Korean Math. Soc. 41 (2004), 1-20. MR 2048697 (2004m:47047)
  • 7. O. Hatori and T. Miura, On a characterization of the maximal ideal spaces of commutative $ C\sp *$-algebras in which every element is the square of another, Proc. Amer. Math. Soc. 128 (2000), 1185-1189. MR 1690991 (2000k:46072a)
  • 8. T. Miura and K. Niijima, On a characterization of the maximal ideal spaces of algebraically closed commutative $ C\sp *$-algebras, Proc. Amer. Math. Soc. 131 (2003), 2869-2876. MR 1974344 (2004c:46094)
  • 9. J. G. Hocking and G. S. Young, Topology, Dover Publications Inc., New York, 1961. MR 0125557 (23:A2857)
  • 10. H. Kamowitz, Compact endomorphisms of Banach algebras, Pacific J. Math. 89 (1980), 313-325. MR 0599123 (82c:46063)
  • 11. H. Kamowitz and S. Scheinberg, Some properties of endomorphisms of Lipschitz algebras, Studia Math. 96 (1990), 255-261. MR 1067312 (91k:46053)
  • 12. U. Klein, Kompakte multiplikative Operatoren auf uniformen Algebren, Mitt. Math. Sem. Giessen 232 (1997). MR 1479364 (99b:47043)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 46J10, 47B48

Retrieve articles in all journals with MSC (2000): 46J10, 47B48


Additional Information

J. F. Feinstein
Affiliation: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, England
Email: Joel.Feinstein@nottingham.ac.uk

T. J. Oliver
Affiliation: School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, England
Email: Thomas.Oliver@maths.nottingham.ac.uk

DOI: https://doi.org/10.1090/S0002-9939-06-08441-3
Received by editor(s): October 14, 2004
Received by editor(s) in revised form: July 21, 2005
Published electronically: June 28, 2006
Additional Notes: The second author would like to thank the EPSRC for providing support for this research
Communicated by: N. Tomczak-Jaegermann
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society