A HILBERT C*-MODULE NOT ANTI-ISOMORPHIC TO ITSELF

MOHAMMAD B. ASADI AND A. KHOSRAVI

(Communicated by Joseph A. Ball)

Abstract. We study the complexification of real Hilbert C*-modules over real C*-algebras. We give an example of a Hilbert Ac-module that is not the complexification of any Hilbert A-module, where A is a real C*-algebra.

1. Introduction

The Hilbert C*-module theory has, so far, mainly been focused on Hilbert C*-modules over complex C*-algebras. However, one can verify that, with some appropriate modification, most Hilbert C*-module results still hold for real Hilbert C*-modules over real C*-algebras. Also, it would be interesting if we could build up a connection between real Hilbert C*-modules and complex Hilbert C*-modules. A standard way to do this is to consider the complexification of real Hilbert C*-modules. We show that for every real Hilbert A-module E over a real C*-algebra A, there exists a unique Ac-valued inner product on Ec = E + iE that extends the original A-valued inner product on E, and Ec equipped with this Ac-valued inner product will be a Hilbert Ac-module.

It is well known that Hilbert C*-modules can be represented as concrete ones, the same as C*-algebras [2], [7], [11]. The existence of C*-algebras not isomorphic to the complexification of any real C*-algebra has been known for some time. Early examples are due to Raeburn and P. Green, and several examples are given in [9]. Also, A. Connes showed that there are von Neumann factors, which are not isomorphic, as von Neumann algebras, to their opposites [4].

On the other hand, every complex Hilbert space is the complexification of some real Hilbert space and one would like to think that Hilbert C*-modules behave like Hilbert spaces. Despite the fact that we can show that every Hilbert K(H)-module is the complexification of some real Hilbert C*-module, we give an example of a Hilbert Ac-module that is not the complexification of any Hilbert A-module.

2. Real Hilbert C*-modules

As in the complex case, we can define real Hilbert C*-modules over real C*-algebras just as the usual Hilbert C*-modules by replacing the field C with the field R.
Note that the definition conditions require the inner product to be linear in both its first and second variables.

If \(\pi \) denotes a faithful \(*\)-representation of a real \(C^* \)-algebra \(A \) on a real Hilbert space \(H \), we can, in a similar way to the complex case [11], identify the Hilbert \(C^* \)-module \(E \) as a concrete Hilbert \(\pi(A) \)-module of \(B(H,K) \) for some real Hilbert space \(K \) by the isometry \(\Phi : E \to B(H,K), x \mapsto \Phi_x \). Here \(\Phi_x(h) = x \otimes h \), for all \(x \in E, h \in H \), and \(\Phi \) satisfies \((\Phi_x)^*\Phi_y = \pi(\langle x, y \rangle) \), \(\Phi_{xa} = \Phi_x \pi(a) \). Here \(K = E \otimes H \) is the completion of the pre-Hilbert space \(E \otimes H \) by the following inner product:

\[
\langle x \otimes h, y \otimes g \rangle = \langle h, \pi((x,y))g \rangle \quad \text{for all } x, y \in E, h, g \in H.
\]

3. The complexification of real Hilbert \(C^* \)-modules

If \(A \) is a real algebra and \(E \) is a real right \(A \)-module, then there is a natural right \(A_c \)-module structure on the complexification \(E_c \) of \(E \), given by

\[
(x + iy)(a + ib) = (xa - yb) + i(xb + ya),
\]

for all \(x, y \in E, a, b \in A \).

Proposition 3.1. Let \(A \) be a real \(C^* \)-algebra and let \((E, \langle \cdot, \cdot \rangle) \) be a real Hilbert \(A \)-module. Then there is a (unique) \(A_c \)-valued inner product on \(E_c \), which keeps the original \(A \)-valued inner product on \(E \), and \(E_c \) equipped with this \(A_c \)-valued inner product will be a Hilbert \(A_c \)-module.

Proof. There is a natural (unique) \(A_c \)-valued inner product on \(E_c \), given by

\[
\langle x + iy, x' + iy' \rangle_c = \langle x, x' \rangle + \langle y, y' \rangle + i(x, y') - iy(x', y).
\]

All of the circumstances based on which \((E_c, \langle \cdot, \cdot \rangle_c) \) will be a Hilbert \(C^* \)-module over \(A_c \) can be deduced directly, except the condition

\[
(x + iy, x + iy)_c \geq 0,
\]

for all \(x, y \in E \).

Without loss of generality, we can assume that \(A \) is a concrete real \(C^* \)-algebra in \(B(H) \) for some real Hilbert space \(H \). Therefore, we can choose a real Hilbert space \(K \) such that \(E \) can be regarded as a concrete real Hilbert \(A \)-module of \(B(H,K) \); therefore,

\[
(x + iy, x + iy)_c = \langle x, x \rangle + \langle y, y \rangle + i\langle x, y \rangle - \langle y, x \rangle = x^*x + y^*y + i(x^*y - y^*x) = (x + iy)^*(x + iy) \in A_c^+.
\]

Remark 3.2. Let \(A \) be a real \(C^* \)-algebra. It is natural to ask whether or not every Hilbert \(A_c \)-module \(E \) can be obtained as the complexification of some real Hilbert \(A \)-module. We can characterize complex Hilbert \(C^* \)-modules that can be expressed as the complexification of some real Hilbert \(C^* \)-modules by the following:

The Hilbert \(A_c \)-module \(E \) is the complexification of some real Hilbert \(A \)-module if and only if there exists a conjugate linear \("-\) on \(E \) such that \(-^2 = id, \overline{\langle \xi, \eta \rangle} = \langle \xi, \eta \rangle \) and \(\overline{\xi a} = \overline{\xi} \overline{a} \) for all \(\xi, \eta \in F, a \in A_c \).
However, the most interesting thing is the question of which Hilbert \(A_c \)-modules are complexifications. In particular, which real \(C^* \)-algebras \(A \) have the property that every Hilbert \(A_c \)-module is a complexification of some Hilbert \(A \)-module.

Let \(E \) be a Hilbert \(C^* \)-module over an arbitrary \(C^* \)-algebra \(A \). We recall the definition of an orthonormal basis for Hilbert \(C^* \)-modules from [1]. An element \(v \in E \) is said to be a basic vector if \(e = \langle v, v \rangle \) is a minimal projection in \(A \), in the sense \(c_Ae = Ce \). A system \((v_\lambda), \lambda \in \Lambda \), in \(E \) is said to be an orthonormal basis for \(E \) if it generates a dense submodule of \(E \) and each \(v_\lambda \) is a basic vector and \(\langle v_\lambda, v_\mu \rangle = 0 \) for all \(\lambda \neq \mu \).

Proposition 3.3. Let \(A \) be a real \(C^* \)-algebra. Then every Hilbert \(A_c \)-module that has an orthonormal basis is a complexification of some Hilbert \(A \)-module.

Proof. Let \(E \) be a Hilbert \(A \)-module and let \((v_\lambda), \lambda \in \Lambda \), be an orthonormal basis for \(E \). Then \(x = \sum_\lambda \langle v_\lambda, x \rangle v_\lambda \) for all \(x \in E \), by [1] Theorem 1.

If \("−" \) is the conjugation on \(A \), and \(e_\lambda = \langle v_\lambda, v_\lambda \rangle \), then \(e_\lambda\overline{e_\lambda} = \alpha_\lambda e_\lambda \) for some \(\alpha_\lambda \in \mathbb{C} \) by minimality of \(e_\lambda \). Also, \(\alpha_\lambda \) is positive since \(e_\lambda\overline{e_\lambda} \) is a positive element in \(A \). We define \(\varphi = \sum_\lambda \sqrt{\alpha_\lambda} \langle v_\lambda, x \rangle \) for all \(x \in E \). One can easily check that the operation \("−" \) has properties mentioned in the previous remark. \(\square \)

It is proved in [1] Theorem 4 that each Hilbert \(C^* \)-module over the \(C^* \)-algebra of (not necessarily all) compact operators on some complex Hilbert space possesses an orthonormal basis. Then we have

Corollary 3.4. Let \(A \) be an arbitrary real \(C^* \)-algebra of (not necessarily all) compact operators on some real Hilbert space. Then every Hilbert \(A_c \)-module is a complexification of some Hilbert \(A \)-module.

Now, we are going to show that Corollary 3.4 is not necessarily true for all real \(C^* \)-algebras.

Proposition 3.5. Let \(A \) be a real \(C^* \)-algebra, in some \(M_n(A_c) \) of which there exists a projection \(P \) that is not Murray-von Neumann equivalent to the conjugate projection \(\overline{P} \), where \(\overline{P} = [\overline{p}_{ij}] \) whenever \(P = [p_{ij}] \). Then \(PA_c^n \) will be a Hilbert \(A_c \)-module that is not the complexification of any real Hilbert \(A \)-module.

Proof. Assume, to reach a contradiction, that \(PA_c^n \) is the complexification of a real Hilbert \(A \)-module. Thus there exists the conjugate \(A_c \)-linear map \(\overline{\cdot} : PA_c^n \to PA_c^n \), mentioned in Remark 3.2. Now, since \(\overline{P[0...1j...0]} \in PA_c^n \), there exist the elements \(c_{1,j}, ..., c_{n,j} \in A_c \) such that \(\overline{P[0...1j...0]} = P[c_{1,j}, ..., c_{n,j}] \); therefore,

\[
\overline{P[a_1, ..., a_n]}^t = P[c_{1,j}, ..., c_{n,j}]^t
\]

for all \(a_1, ..., a_n \in A \). We let \(T = P[c_{i,j}] \); then we have

\[
P[a_1, ..., a_n]^t = \overline{T[a_1, ..., a_n]}^t = \overline{T[a_1, ..., a_n]}^t = \overline{T[a_1, ..., a_n]}^t = T^t\overline{a_1, ..., a_n} = T^t\overline{a_1, ..., a_n}.
\]

Then, \(P = TT \).

Also, we have

\[
\langle P[a_1, ..., a_n]^t, P[b_1, ..., b_n]^t \rangle = \langle P[a_1, ..., a_n]^t, P[b_1, ..., b_n]^t \rangle.
\]
Then
\[
\langle [a_1, \ldots, a_n]^t, T^*T [b_1, \ldots, b_n]^t \rangle = \langle [a_1, \ldots, a_n]^t, P [b_1, \ldots, b_n]^t \rangle
\]
for all \(a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathcal{A}_c\), where in the last step we used the fact that the Hilbert \(\mathcal{A}_c\)-module \(\mathcal{A}_c^n\) is the complexification of the real Hilbert \(\mathcal{A}\)-module \(\mathcal{A}^n\). Then \(T^*T = \mathcal{T}\) and furthermore,
\[
\mathcal{T} = \mathcal{PT} = \mathcal{P} \mathcal{T} = T^*T \mathcal{T} = T^*P = T^*.
\]
Therefore, \(P\) is Murray-von Neumann equivalent to the conjugate projection \(\mathcal{T}\), and this contradicts the choice of \(P\). \(\square\)

Certainly, \(P\mathcal{A}_c^n\) is a finitely generated Hilbert \(\mathcal{A}_c\)-module that is not the complexification of any real Hilbert \(\mathcal{A}\)-module.

J. L. Boersema [3] developed the functor \(KT(\mathcal{A})\) that is based on projections in \(\mathcal{A}_c\) that are equivalent to their conjugate projection. There is a natural transformation from \(KT_0(\mathcal{A})\) to \(K_0(\mathcal{A}_c)\) that is not surjective in general. Thus there are projections in some \(M_n(\mathcal{A}_c)\) that are not Murray-von Neumann equivalent to their conjugate projection. Therefore, there exists a source of examples satisfying the hypothesis of the above proposition.

For a concrete example, we can consider \(\mathcal{A} = C(S^2, \mathbb{R})\) and hence \(\mathcal{A}_c = C(S^2, \mathbb{C})\). Then we look at \(K_0(\mathcal{A}_c) = \mathbb{Z} \oplus \mathbb{Z}\). The first summand is for the unit and the second summand is for the Bott element. The natural conjugation transformation \(c : K_0(\mathcal{A}_c) \to K_0(\mathcal{A}_c)\) fixes the first generator, but is multiplication by \(-1\) on the second generator. Thus the Bott projection is not equivalent to its conjugate.

Acknowledgment

The authors wish to thank the referee for valuable comments. Also, we are grateful to Professors N. C. Phillips and J. L. Boersema for helpful discussions.

References

Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, 599 Taleghani Avenue, Tehran 15614, Iran

E-mail address: mb.asadi@gmail.com

Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, 599 Taleghani Avenue, Tehran 15614, Iran

E-mail address: khosravi@saba.tmu.ac.ir