-boundedness for the Hilbert transform and maximal operator along a class of nonconvex curves

Author:
Neal Bez

Journal:
Proc. Amer. Math. Soc. **135** (2007), 151-161

MSC (2000):
Primary 42B15

Published electronically:
June 20, 2006

MathSciNet review:
2280201

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Some sufficient conditions on a real polynomial and a convex function are given in order for the Hilbert transform and maximal operator along to be bounded on , for all in , with bounds independent of the coefficients of . The same conclusion is shown to hold for the corresponding hypersurface in under weaker hypotheses on .

**[CChVWWa]**Anthony Carbery, Michael Christ, James Vance, Stephen Wainger, and David K. Watson,*Operators associated to flat plane curves: 𝐿^{𝑝} estimates via dilation methods*, Duke Math. J.**59**(1989), no. 3, 675–700. MR**1046743**, 10.1215/S0012-7094-89-05930-9**[CRWr]**Anthony Carbery, Fulvio Ricci, and James Wright,*Maximal functions and Hilbert transforms associated to polynomials*, Rev. Mat. Iberoamericana**14**(1998), no. 1, 117–144. MR**1639291**, 10.4171/RMI/237**[CZ]**Anthony Carbery and Sarah Ziesler,*Hilbert transforms and maximal functions along rough flat curves*, Rev. Mat. Iberoamericana**10**(1994), no. 2, 379–393. MR**1286480**, 10.4171/RMI/156**[Ca et al]**Hasse Carlsson, Michael Christ, Antonio Córdoba, Javier Duoandikoetxea, José L. Rubio de Francia, James Vance, Stephen Wainger, and David Weinberg,*𝐿^{𝑝} estimates for maximal functions and Hilbert transforms along flat convex curves in 𝑅²*, Bull. Amer. Math. Soc. (N.S.)**14**(1986), no. 2, 263–267. MR**828823**, 10.1090/S0273-0979-1986-15433-9**[CoRdF]**A. Córdoba and J. L. Rubio de Francia,*Estimates for Wainger’s singular integrals along curves*, Rev. Mat. Iberoamericana**2**(1986), no. 1-2, 105–117. MR**864657**, 10.4171/RMI/29**[FGWr]**Magali Folch-Gabayet and James Wright,*An oscillatory integral estimate associated to rational phases*, J. Geom. Anal.**13**(2003), no. 2, 291–299. MR**1967028**, 10.1007/BF02930698**[KWWrZ]**Weon-Ju Kim, Stephen Wainger, James Wright, and Sarah Ziesler,*Singular integrals and maximal functions associated to surfaces of revolution*, Bull. London Math. Soc.**28**(1996), no. 3, 291–296. MR**1374408**, 10.1112/blms/28.3.291**[NSW]**A. Nagel, E. M. Stein, and S. Wainger,*Differentiation in lacunary directions*, Proc. Nat. Acad. Sci. U.S.A.**75**(1978), no. 3, 1060–1062. MR**0466470****[NVWWe]**Alexander Nagel, James Vance, Stephen Wainger, and David Weinberg,*Hilbert transforms for convex curves*, Duke Math. J.**50**(1983), no. 3, 735–744. MR**714828**, 10.1215/S0012-7094-83-05036-6**[S]**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192****[SW]**Elias M. Stein and Stephen Wainger,*Problems in harmonic analysis related to curvature*, Bull. Amer. Math. Soc.**84**(1978), no. 6, 1239–1295. MR**508453**, 10.1090/S0002-9904-1978-14554-6**[SeWWrZ]**A. Seeger, S. Wainger, J. Wright, S. Ziesler,*Singular and maximal integral operators associated to hypersurfaces: theory*, preprint.**[St]**J. O. Strömberg, unpublished.**[VWWr]**James Vance, Stephen Wainger, and James Wright,*The Hilbert transform and maximal function along nonconvex curves in the plane*, Rev. Mat. Iberoamericana**10**(1994), no. 1, 93–121. MR**1271758**, 10.4171/RMI/146**[Wr]**James Wright,*𝐿^{𝑝} estimates for operators associated to oscillating plane curves*, Duke Math. J.**67**(1992), no. 1, 101–157. MR**1174604**, 10.1215/S0012-7094-92-06705-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (2000):
42B15

Retrieve articles in all journals with MSC (2000): 42B15

Additional Information

**Neal Bez**

Affiliation:
School of Mathematics, University of Edinburgh, Kings’s Buildings, Edinburgh, EH3 9JZ United Kingdom

Email:
n.r.bez@sms.ed.ac.uk

DOI:
http://dx.doi.org/10.1090/S0002-9939-06-08603-5

Received by editor(s):
July 26, 2005

Published electronically:
June 20, 2006

Additional Notes:
The author was supported by an EPSRC award

Communicated by:
Michael Lacey

Article copyright:
© Copyright 2006
American Mathematical Society