Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Exact multiplicity result for the perturbed scalar curvature problem in $ \mathbb{R}^N $ $ (N \geq 3)$


Author: S. Prashanth
Journal: Proc. Amer. Math. Soc. 135 (2007), 201-209
MSC (2000): Primary 35B32, 35B33
Published electronically: June 28, 2006
MathSciNet review: 2280188
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D^{1,2} (\mathbb{R}^N)$ denote the closure of $ C_0^\infty (\mathbb{R}^N)$ in the norm $ \Vert u\Vert _{D^{1,2} (\mathbb{R}^N)}^2 = \int\limits_{\mathbb{R}^N} \vert\nabla u\vert^2.$ Let $ N \geq 3$ and define the constants $ \alpha_N = N (N-2)$ and $ C_N = (N (N-2))^{\frac{N-2}{4}}.$ Let $ K \in C^2 (\mathbb{R}^N).$ We consider the following problem for $ \varepsilon \geq 0:$

$\displaystyle (P_\varepsilon)\qquad\qquad\quad \left\{\begin{array}{llll} \mbox... ...array}\right\} \mbox{ in } \mathbb{R}^N. \end{array} \right. \qquad\quad\qquad $

We show an exact multiplicity result for $ (P_\varepsilon)$ for all small $ \varepsilon >0$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 35B32, 35B33

Retrieve articles in all journals with MSC (2000): 35B32, 35B33


Additional Information

S. Prashanth
Affiliation: TIFR Centre, Indian Institute of Science Campus, P.B. No. 1234, Bangalore - 560 012, India

DOI: http://dx.doi.org/10.1090/S0002-9939-06-08644-8
PII: S 0002-9939(06)08644-8
Keywords: Yamabe problem, exact multiplicity, scalar curvature
Received by editor(s): April 14, 2005
Received by editor(s) in revised form: July 30, 2005
Published electronically: June 28, 2006
Communicated by: David S. Tartakoff
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.