EXACT MULTIPLICITY RESULT FOR THE PERTURBED SCALAR CURVATURE PROBLEM IN \mathbb{R}^N ($N \geq 3$)

S. PRASHANTH

(Communicated by David S. Tartakoff)

Abstract. Let $D^{1,2}(\mathbb{R}^N)$ denote the closure of $C_0^\infty(\mathbb{R}^N)$ in the norm $\|u\|_{D^{1,2}(\mathbb{R}^N)}^2 = \int_{\mathbb{R}^N} |\nabla u|^2$. Let $N \geq 3$ and define the constants $\alpha_N = N(N-2)$ and $C_N = (N(N-2))^{N-2/4}$. Let $K \in C^2(\mathbb{R}^N)$. We consider the following problem for $\varepsilon \geq 0$:

$$
\begin{aligned}
\text{Find } u \in D^{1,2}(\mathbb{R}^N) \text{ solving:} \\
-\Delta u = \alpha_N (1 + \varepsilon K(x)) u^{\frac{N+2}{N-2}}, & \quad \text{in } \mathbb{R}^N.
\end{aligned}
$$

We show an exact multiplicity result for (P_ε) for all small $\varepsilon > 0$.

1. Introduction

Let $D^{1,2}(\mathbb{R}^N)$ denote the closure of $C_0^\infty(\mathbb{R}^N)$ in the norm

$$
\|u\|_{D^{1,2}(\mathbb{R}^N)}^2 = \left(\int_{\mathbb{R}^N} |\nabla u|^2 \right)^{1/2}.
$$

Let $N \geq 3$ and define the constants $\alpha_N = N(N-2)$ and $C_N = (N(N-2))^{N-2/4}$. Let $K \in C^2(\mathbb{R}^N)$. We consider the following problem for $\varepsilon \geq 0$:

$$
\begin{aligned}
\text{Find } u \in D^{1,2}(\mathbb{R}^N) \text{ solving:} \\
-\Delta u = \alpha_N (1 + \varepsilon K(x)) u^{\frac{N+2}{N-2}}, & \quad \text{in } \mathbb{R}^N.
\end{aligned}
$$

We are interested in showing an exact multiplicity result for (P_ε) for all small $\varepsilon > 0$ (see Theorem 1.4 below).

The above problem is a “perturbed” version of the well-known scalar curvature problem which arises in differential geometry. More precisely, the problem is to find out if a given smooth function R on the N-dimensional unit sphere S^N is the scalar curvature function of a metric g on S^N which is conformal to the standard...
metric. This gives rise to the following problem:

\[
\begin{align*}
(P_g) \quad \text{Find } u \in C^2(S^N) \text{ solving:} \\
\frac{4(N-1)}{N-2} \Delta_g u + Ru^{\frac{N+2}{2}} = N(N-1)u, \\
\end{align*}
\]

in \(S^N \).

The above problem has been extensively studied using the background of differential geometry; see the book of T. Aubin [2] for a survey of the available results.

We now assume that \(R \) is a perturbation of the constant, viz, \(R = 1 + \varepsilon K \) for a smooth function \(K \) on \(S^N \) and \(\varepsilon > 0 \) small. Then, using the standard stereographic projection from \(S^N \) to \(\mathbb{R}^N \), it can be checked that \((P_g) \) is transformed to \((P) \).

Existence of solutions to \((P)\) was done in [1] using variational methods and finite-dimensional reduction techniques. To describe their result, we make the following assumptions on \(K \):

(K1) \(K \in C^2(\mathbb{R}^N), \|K\|_{L^\infty(\mathbb{R}^N)} + \|\nabla K\|_{L^\infty(\mathbb{R}^N;\mathbb{R}^N)} + \|D^2 K\|_{L^\infty(\mathbb{R}^N;\mathbb{R}^N \times \mathbb{R}^N)} < \infty. \)

(K2) (a) There exists \(\rho > 0 \) such that \(\langle \nabla K(x), x \rangle < 0 \) \(\forall |x| \geq \rho \),

(b) \(\langle \nabla K(x), x \rangle \in L^1(\mathbb{R}^N), \int \langle \nabla K(x), x \rangle dx < 0. \)

(K3) The set of all critical points of \(K \), denoted by crit \((K) \), is finite.

(K4) \(\forall \xi \in \text{crit} \((K) \), \) there exists \(\beta = \beta_\xi \in [1, N] \) and \(Q_\xi : \mathbb{R}^N \to \mathbb{R} \) depending continuously on \(y \) locally near \(\xi \) such that

\[A_\xi \overset{\text{def}}{=} \frac{N-2}{2N} \int_{\mathbb{R}^N} Q_\xi(y)U_{1,0}^{\frac{2N}{N-2}}(y)dy \neq 0 \]

and the following relations hold:

\[
\begin{cases}
Q_\xi(\lambda x) = \lambda^\beta Q_\xi(x), & \forall \lambda \geq 0, \\
K(x) = K(y) + Q_\xi(x-y) + o(|x-y|^\beta) & \text{as } x \to y, \\
\sum_{\xi \in \text{crit} (K)} \text{deg}_{\text{loc}}(\nabla K, \xi) \neq (-1)^N.
\end{cases}
\]

We also recall the following well-known classification result for solutions of \((P)\):

\[\text{Theorem 1.1. Solutions of } (P_0) \text{ form an } (N+1)\text{-dimensional manifold given by} \]

\[\mathcal{M} = \{ U_{\delta,y}(x) \overset{\text{def}}{=} C_N \delta^{\frac{N-2}{2}}(\delta^2 + |x-y|^2)^{\frac{N-2}{2}} : (\delta, y) \in \mathbb{R}^+ \times \mathbb{R}^N \}. \]

We can now state the following existence result.

\[\text{Theorem 1.2 (I). Let } K \text{ satisfy the assumptions (K1)-(K5). Then there exists } \varepsilon_0 > 0 \text{ such that the following hold:} \]

(i) \((P_\varepsilon) \) has a solution \(\forall \varepsilon \in (0, \varepsilon_0) \),

(ii) \(\forall \varepsilon \in (0, \varepsilon_0), \) there exists \((\delta_\varepsilon, \nu_\varepsilon) \in \mathbb{R}^+ \times \mathbb{R}^N \) such that for any compact set \(A \subset \mathbb{R}^+ \times \mathbb{R}^N, \) we may find a constant \(c(A) > 0 \) such that \(\|u_\varepsilon - U_{\delta_\varepsilon, \nu_\varepsilon}\|_{D^1,2(\mathbb{R}^N)} \leq c(A)\varepsilon. \)

We now define what we mean by a stable zero of a vector field.

\[\text{Definition 1.3. Let } G : \mathbb{R}^+ \times \mathbb{R}^N \to \mathbb{R}^{N+1} \text{ be a } C^1 \text{ vector field. We say that} \]

a point \((\delta, y) \in \mathbb{R}^+ \times \mathbb{R}^N \) is a stable zero for \(G \) if \(G(\delta, y) = 0 \) and its derivative \(DG(\delta, y) \) is an invertible matrix.
We define the following functional:

\[
\Gamma(\delta, y) = \frac{N - 2}{2N} \int_{\mathbb{R}^N} K(\delta x + y) u_{1,0}^{\frac{2N}{N-2}}(x) \, dx.
\]

For a set \(A \subset \mathbb{R}^+ \times \mathbb{R}^N \), we let \(\mathcal{M}_A = \{ U_{\delta, y} : (\delta, y) \in A \} \). For a function \(u \in D^{1,2} (\mathbb{R}^N) \), let \(d(u, \mathcal{M}_A) = \inf_{(\delta, y) \in A} \| u - U_{\delta, y} \|_{D^{1,2}(\mathbb{R}^N)} \). We can now state the following exact multiplicity result which we will prove later in §4.

Theorem 1.4. Let \(K \) satisfy the assumptions (K1)–(K5). We further suppose that \(\nabla \Gamma \) has finitely many zeroes in \(\mathbb{R}^+ \times \mathbb{R}^N \), all of which are stable. Let \(A \subset \mathbb{R}^+ \times \mathbb{R}^N \) be any compact set containing the zeroes of \(\nabla \Gamma \). Then there exist \(\rho_0 = \rho_0(A) > 0 \) and \(\varepsilon_0 = \varepsilon_0(\rho) > 0 \) such that for all \(\varepsilon \in (0, \varepsilon_0) \), the problem \((P_\varepsilon) \) has exactly the same number of solutions \(u \) with \(d(u, \mathcal{M}_A) < \rho_0 \) as the number of zeroes of \(\nabla \Gamma \).

2. Preliminary results

In this section, we recall some of the well-known results concerning the problem \((P_\varepsilon) \) and its linearized version. Given a solution \(u_\varepsilon \) of \((P_\varepsilon) \) we consider the following linearization of \((P_\varepsilon) \) about \(u_\varepsilon \):

\[
(LP_\varepsilon) \quad \begin{cases} -\Delta w = N(N + 2) u_\varepsilon^{4/N - 2} w & \text{in } \mathbb{R}^N, \\ w \in D^{1,2}(\mathbb{R}^N). \end{cases}
\]

Let \((LP_0)_{\delta, y} \) denote the above linearized problem when \(\varepsilon = 0 \) and \(u_\varepsilon = U_{\delta, y} \) for some \((\delta, y) \in \mathbb{R}^+ \times \mathbb{R}^N \). Then, we have the following characterization of solutions of \((LP_0)_{\delta, y} \).

Theorem 2.1. Every solution of \((LP_0)_{\delta, y} \) is of the form

\[
w = c_0 \frac{\delta U_{\delta, y}}{\partial \delta} + \sum_{k=1}^{N} c_k \frac{\partial U_{\delta, y}}{\partial y_i}
\]

for some \(c_i \in \mathbb{R}, \ i = 0, 1, \ldots, N \).

Proof. See (3). \(\square \)

We now recall the following natural decay estimates for solutions of \((P_\varepsilon) \) and \((LP_\varepsilon) \).

Theorem 2.2. Let \(\{ u_\varepsilon \}_{\varepsilon > 0} \) be a sequence of solutions of \((P_\varepsilon) \) with \(\sup_{\varepsilon > 0} \| u_\varepsilon \|_{D^{1,2}(\mathbb{R}^N)} < \infty \). Let \(\{ w_\varepsilon \}_{\varepsilon > 0} \) be a sequence of solutions of \((LP_\varepsilon) \) with \(\sup_{\varepsilon > 0} \| w_\varepsilon \|_{L^\infty(\mathbb{R}^N)} < \infty \). Then we have the following decay estimates:

\[
\sup_{\varepsilon > 0} \sup_{x \in \mathbb{R}^N} \{ |x|^{N-2} u_\varepsilon(x) + |x|^{N-1} |\nabla u_\varepsilon(x)| \} < \infty,
\]

\[
\sup_{\varepsilon > 0} \sup_{x \in \mathbb{R}^N} \{ |x|^{N-2} w_\varepsilon(x) + |x|^{N-1} |\nabla w_\varepsilon(x)| \} < \infty.
\]

Proof. Follows in a standard way by using the Kelvin Transform in \(\mathbb{R}^N \) and elliptic regularity. \(\square \)
Finally, we state the very important Pohozaev identity for \((P_z)\):

Theorem 2.3. Let \(\{u_{\varepsilon}\}_{\varepsilon > 0}\) be a sequence of solutions of \((P_z)\) with \(\sup_{\varepsilon > 0} \|u_{\varepsilon}\|_{D^{1,2}(\mathbb{R}^N)} < \infty\). Then the following identities hold:

\[
\int_{\mathbb{R}^N} K(x)u_{\varepsilon}^{N+2} \frac{\partial u_{\varepsilon}}{\partial x_i} = 0, \quad i = 1, \ldots, N, \tag{2.2}
\]

\[
\int_{\mathbb{R}^N} K(x)u_{\varepsilon}^{N+2} [(x - y) \cdot \nabla u_{\varepsilon} + \left(\frac{N-2}{2}\right)u_{\varepsilon}] = 0. \tag{2.3}
\]

Proof. See [4]. \qed

3. Local uniqueness of solutions

We note that if \(\{u_{\varepsilon}\}_{\varepsilon > 0}\) is a sequence of solutions of \((P_z)\) converging (as \(\varepsilon \to 0\)) to \(U_{\delta,y}\) in \(D^{1,2}(\mathbb{R}^N)\), then thanks to Theorems 2.2 and 2.3 we obtain that necessarily \(\nabla \Gamma(\delta, y) = 0\). We show in this section that for all small enough \(\varepsilon > 0\) there is at most one sequence of solutions \(\{u_{\varepsilon}\}\) “bifurcating” from \(U_{\delta,y}\) when \((\delta, y)\) is a stable zero of \(\nabla \Gamma\).

Theorem 3.1. Let \((\delta, y) \in \mathbb{R}^+ \times \mathbb{R}^N\) be a stable zero of \(\nabla \Gamma\). Let \(\{u_{1,\varepsilon}\}_{\varepsilon > 0}\) and \(\{u_{2,\varepsilon}\}_{\varepsilon > 0}\) be two sequences of solutions to \((P_z)\) with \(\|u_{i,\varepsilon} - U_{\delta,y}\|_{D^{1,2}(\mathbb{R}^N)} \to 0\) as \(\varepsilon \to 0\), \(i = 1, 2\). Then, there exists \(\varepsilon_0 > 0\) such that \(u_{1,\varepsilon} \equiv u_{2,\varepsilon} \forall \varepsilon \in (0, \varepsilon_0)\).

Proof. We suppose that \((P_z)\) admits two distinct sequences of solutions \(\{u_{1,\varepsilon}\}_{\varepsilon > 0}\) and \(\{u_{2,\varepsilon}\}_{\varepsilon > 0}\) for some sequence \(\varepsilon_0 \to 0\) for \(i = 1, 2\) with \(\|u_{i,\varepsilon} - U_{\delta,y}\|_{D^{1,2}(\mathbb{R}^N)} \to 0\) as \(\varepsilon \to 0\) and arrive at a contradiction. For notational ease, we let \(u_{i,n} = u_{i,\varepsilon_n}\). Define \(\tilde{w}_n = u_{1,n} - u_{2,n}\). Note that \(\|\tilde{w}\|_{D^{1,2}(\mathbb{R}^N)} \to 0\) as \(n \to \infty\). By Theorem 2.2, we note that \(\{\tilde{w}_n\}\) is a bounded sequence in \(L^\infty(\mathbb{R}^N)\). We let \(w_n = \frac{\tilde{w}_n}{\|\tilde{w}_n\|_{L^\infty(\mathbb{R}^N)}}\).

Let \(x_n \in \mathbb{R}^N\) be such that \(|w_n(x_n)| \geq \frac{1}{2}\). We note that \(w_n\) satisfies

\[-\Delta w_n = N(N + 2)(1 + \varepsilon_n K)c_n w_n,\]

where

\[c_n(x) = \int_0^1 \left(tu_{1,n}(x) + (1-t)u_{2,n}(x)\right)^{4/N-2} dt.\]

Using standard regularity theory, we get that \(w_n \to w\) in \(C^2_{\text{loc}}(\mathbb{R}^N)\) and that \(w\) satisfies

\[-\Delta w = N(N + 2)U_{\delta,y}^{4/N-2} w\text{ in } \mathbb{R}^N.\]

Thanks to Theorem 2.1 we obtain that

\[w = c_0 \frac{\partial U_{\delta,y}}{\partial \delta} + \sum_{k=1}^N c_k \frac{\partial U_{\delta,y}}{\partial y_k}\]

for some \(c_k \in \mathbb{R}, k = 0, 1, \ldots, N\). We now

Claim. \(c_k = 0, k = 0, 1, \ldots, N\).
Proof of Claim. From the Pohozaev identity (2.2) we obtain that
\[\int_{\mathbb{R}^N} K(x) \frac{\partial}{\partial x_j} \left(\frac{2N}{u_{2,n}^{2N}} - \frac{2N}{u_{1,n}^{2N}} \right) = 0, \quad j = 1, \ldots, N. \]

Using integration by parts and the decay estimates in Theorem 2.2, we obtain from the above equation that
\[\int_{\mathbb{R}^N} \frac{\partial K}{\partial x_j} \left(\frac{2N}{u_{2,n}^{2N}} - \frac{2N}{u_{1,n}^{2N}} \right) = 0, \quad j = 1, \ldots, N. \]

Using the Taylor series, we can write the above equation as
\[\int_{\mathbb{R}^N} \frac{\partial K}{\partial x_j} \left(\frac{1}{tu_{2,n}(x)} + \frac{1}{u_{1,n}(x)} \right) \frac{N+2}{N-2} \frac{N}{2} w_n(x) dx = 0. \]

Passing to the limit, as \(n \to \infty \), in the above equation we obtain
\[\int_{\mathbb{R}^N} \frac{\partial K}{\partial x_j} U_{\delta,y}^{N+2} w = 0. \]

Once again, integrating by parts in the above equation, we obtain
\[\left(\frac{N+2}{N-2} \right) \int_{\mathbb{R}^N} K(x) U_{\delta,y}^{4/N-2} \frac{\partial U_{\delta,y}}{\partial x_j} w dx + \int_{\mathbb{R}^N} K(x) U_{\delta,y}^{\frac{N+2}{N-2}} \frac{\partial w}{\partial x_j} dx = 0. \]

Noting that \(\frac{\partial U_{\delta,y}}{\partial x_j} = -\frac{\partial U_{\delta,y}}{\partial y_j} \), we obtain from the above equation, for \(1 \leq j \leq N \),
\[\left(\frac{N+2}{N-2} \right) \int_{\mathbb{R}^N} K(x) U_{\delta,y}^{4/N-2} \frac{\partial U_{\delta,y}}{\partial y_j} w dx + \int_{\mathbb{R}^N} K(x) U_{\delta,y}^{\frac{N+2}{N-2}} \frac{\partial w}{\partial y_j} dx = 0. \]

Integrating by parts on the ball \(B_R(y) \), we have for \(i = 1, 2 \),
\[\int_{B_R(y)} (x - y) \cdot \nabla (K(x) u_{i,n}^{\frac{2N}{N-2}}) = NR \int_{\partial B_R(y)} K(\sigma) u_{i,n}^{\frac{2N}{N-2}} (\sigma) d\sigma - N \int_{B_R(y)} K(x) u_{i,n}^{\frac{2N}{N-2}} dx. \]

Letting \(R \to \infty \) in the above equation and using the decay estimates in Theorem 2.2 we obtain
\[\int_{\mathbb{R}^N} (x - y) \cdot \nabla (K(x) u_{i,n}^{\frac{2N}{N-2}}) dx = -N \int_{\mathbb{R}^N} K(x) u_{i,n}^{\frac{2N}{N-2}} dx, \quad i = 1, 2. \]

The above equation for \(i = 1, 2 \) can be rewritten as
\[\int_{\mathbb{R}^N} (x - y) \cdot \nabla K(x) u_{i,n}^{\frac{2N}{N-2}} dx + \left(\frac{2N}{N-2} \right) \int_{\mathbb{R}^N} K(x) u_{i,n}^{\frac{N+2}{N-2}} (x) (x - y) \cdot \nabla u_{i,n} dx + N \int_{\mathbb{R}^N} K(x) u_{i,n}^{\frac{2N}{N-2}} dx = 0. \]
Using the Pohozaev identity (2.3) in the above equation, we obtain
\[\int_{\mathbb{R}^N} (x - y) \cdot \nabla K(x) u_{i,n}^{2N} = 0, \quad i = 1, 2. \]

Subtracting the above identity for \(u_{1,n} \) from that for \(u_{2,n} \), dividing by the appropriate norm of \(u_{2,n} - u_{1,n} \) and finally using Taylor's expansion, we obtain
\[\int_{\mathbb{R}^N} (x - y) \cdot \nabla K(x) \left(\int_0^1 (tu_{1,n}(x) + (1 - t)u_{2,n}(x))^\frac{N+2}{N-2} (1 - t)u_n(x) dx \right) = 0. \]

Letting \(n \to \infty \) in the above equation, we obtain
\[\int_{\mathbb{R}^N} (x - y) \cdot \nabla K(x) U_n^{\frac{N+2}{N-2}}(x) w(x) dx = 0. \]

We again integrate by parts in the above equation to obtain
\[\int_{\mathbb{R}^N} K(x) U_n^{\frac{N+2}{N-2}} [Nw + (x - y) \cdot \nabla w] \]
\[+ \left(\frac{N+2}{N-2} \right) \int_{\mathbb{R}^N} K(x) U_n^{\frac{4}{N-2}} (x - y) \cdot \nabla U_n w = 0. \]

A simple calculation (see the Appendix) using the Pohozaev identities in (2.2) and (2.3) shows that, if we let \(c = (c_0, \ldots, c_N)^T \), then (2.2) and (2.3) imply that
\[D^2 \Gamma(\delta, y) c = 0. \]

Since \(D^2 \Gamma(\delta, y) \) was assumed to be an invertible matrix, this means that \(c = 0 \), thereby proving the Claim.

From the above Claim, it follows that \(w \equiv 0 \) in \(\mathbb{R}^N \). Hence, \(w_n \to 0 \) in \(C^2_{\text{loc}}(\mathbb{R}^N) \) which implies that \(|x_n| \to \infty \) as \(n \to \infty \). Define the following Kelvin Transforms:
\[
\begin{align*}
\hat{u}_{i,n}(x) &= |x|^{2-N} u_{i,n} \left(\frac{x}{|x|^2} \right), i = 1, 2, \\
\hat{w}_n(x) &= |x|^{2-N} w_n \left(\frac{x}{|x|^2} \right), \\
\hat{c}_n(x) &= \frac{1}{N-2} \int_0^1 (t \hat{u}_{1,n}(x) + (1-t)\hat{u}_{2,n}(x)) \left(\frac{x}{|x|^2} \right) dt.
\end{align*}
\]

Then, it can be checked that \(\hat{w}_n \) satisfies the following equation:
\[-\Delta \hat{w}_n(x) = N(N + 2)(1 + \varepsilon_n K(\frac{x}{|x|^2})) \hat{c}_n(x) \hat{w}_n(x) \text{ in } \mathbb{R}^N \setminus \{0\}.\]

Using the decay estimates in Theorem 2.2 we obtain that
\[\sup_n \sup_{x \in B_1(0) \setminus \{0\}} |\hat{w}_n(x)| < \infty. \]

Since \(\hat{w}_n \to 0 \) in \(C^2_{\text{loc}}(B_1(0) \setminus \{0\}) \), by the dominated convergence theorem, we obtain that \(\hat{w}_n \to 0 \) in \(L^p(B_1(0)) \) for \(p \geq 1 \). It is also easy to see that \(\{\hat{c}_n\} \) is a bounded sequence in \(L^2(B_1(0)) \). Since the capacity of one point set is zero, we can apply the regularity theory to \(\hat{w}_n \) (see Theorem 8.17 of Gilbarg-Trudinger,”Elliptic PDEs of Second Order”) and get that
\[\|\hat{w}_n\|_{L^\infty(B_{1/2}(0))} \leq c \|\hat{w}_n\|_{L^p(B_1(0))} \forall p > 1. \]
But this implies $\|\tilde{w}_n\|_{L^\infty(B_{1/2}(0))} \to 0$ as $n \to \infty$, contradicting the fact that $|\tilde{w}_n(x_n^*)| \geq \frac{1}{2}$ for all large n. This proves the theorem. \hfill \Box

4. THE EXACT MULTIPLICITY RESULT

We are now ready to prove the exact multiplicity result stated in Theorem 1.4.

Proof of Theorem 1.4. Let M be the number of zeroes of $\nabla \Gamma$. Appealing to Theorem 1.2 we obtain that there exists $\varepsilon_1 = \varepsilon_1(A) > 0$ such that for any $\varepsilon \in (0, \varepsilon_1)$, the problem (P_ε) has at least M solutions $\{u_i^\varepsilon\}_{i=1}^M$ and M points $\{(\varepsilon_i, \gamma_i)\}_{i=1}^M \subset A$ such that $u_i^\varepsilon - U_{\varepsilon_i, \gamma_i} \to 0$ in $D^{1,2}(\mathbb{R}^N)$, $i = 1, \ldots, M$, as $\varepsilon \to 0$. For $\mu > 0$ define

\[S_\mu = \{ u : u \text{ solves } (P_\varepsilon) \text{ for } \varepsilon \in (0, \mu) \} \setminus \{ u_i^\varepsilon \}_{0 < \varepsilon < \mu, 1 \leq i \leq M}. \]

Now define the quantity

\[\theta_\mu = \inf_{u \in S_\mu} d(u, \mathcal{M}_A). \]

We now have the following claim.

Claim. $\theta_0 = \lim_{\mu \to 0} \theta_\mu > 0$.

We suppose that $\theta_0 = 0$ and derive a contradiction. We may then find sequences $\mu_n \to 0$, $\{u_n\} \subset S_{\mu_n}$ and $\{(\varepsilon_n, \gamma_n)\} \subset A$ such that $\|u_n - U_{\varepsilon_n, \gamma_n}\|_{D^{1,2}(\mathbb{R}^N)} \to 0$ as $n \to \infty$. Let $(\varepsilon_n, \gamma_n) \to (\varepsilon, \gamma) \in A$. Clearly we have $\nabla \Gamma(\varepsilon, \gamma) = 0$ which means that $\{u_n\}$ is a sequence of solutions “bifurcating” from (ε, γ). But using the uniqueness result in Theorem 3.1 we obtain a contradiction since $\{u_n\} \subset S_{\mu_n}$ for all n. This proves the Claim.

Therefore, we may choose $\mu_0 > 0$ small enough (but fixed) so that $\theta_\mu \geq \frac{\theta_0}{2}$ for all $0 < \mu < \mu_0$. Also from Theorem 1.2 we obtain that for some constant $c > 1$ and $\varepsilon_2 > 0$ we have $d(u_i^\varepsilon, \mathcal{M}_A) \leq c\varepsilon$, $i = 1, \ldots, M$, $\varepsilon \in (0, \varepsilon_2)$. The theorem now follows by taking $\rho_0 = \frac{\theta_0}{2}$ and $\varepsilon_0 = \min\{\frac{\theta_0}{2c}, \mu_0, \varepsilon_2\}$. \hfill \Box

5. APPENDIX

Let $(\delta_0, \gamma_0) \in \mathbb{R}^+ \times \mathbb{R}^N$ be a stable critical point of Γ. This in particular means that (see Theorem 1.2) there exists a sequence of solutions $\{u_i^\varepsilon\}$ of (P_ε) converging to U_{δ_0, γ_0} in $D^{1,2}(\mathbb{R}^N)$ as $\varepsilon \to 0$. As a consequence we have that U_{δ_0, γ_0} satisfies the Pohozaev identities (2.2)–(2.3).

Let

\[\Lambda(\delta, y) = \int_{\mathbb{R}^N} K(\delta x + y)U_{\delta_0, \gamma_0}^{\frac{N}{2}} \, dx, \quad (\delta, y) \in \mathbb{R}^+ \times \mathbb{R}^N. \]

Note that $\Lambda = (\frac{N-2}{2N}) \Gamma$. We can now state

Proposition A.1. Let K satisfy assumptions (K1)–(K5). Let $(\delta_0, \gamma_0) \in \mathbb{R}^+ \times \mathbb{R}^N$ be a stable critical point of Γ. Let

\[w = c_0 \frac{\partial U_{\delta_0, \gamma_0}}{\partial \delta} + \sum_{k=1}^N c_k \frac{\partial U_{\delta_0, \gamma_0}}{\partial y_k}. \]

Then (2.2)–(2.3) imply that $D^2 \Gamma(\delta_0, \gamma_0) \cdot (c_0, c_1, \ldots, c_N)^T = 0$.

Proof. We note that \(U_{\delta, y} \) satisfies the relations:

\[
U_{\delta, y}(x) = \delta^{\frac{N-2}{2}} U_{1,0}\left(\frac{x-y}{\delta}\right),
\]

\[
\nabla U_{\delta, y}(x) = \delta^{-\frac{N}{2}} \nabla U_{1,0}\left(\frac{x-y}{\delta}\right),
\]

\[
(x - y) \cdot \nabla U_{\delta, y} = -\left[\delta \frac{\partial U_{\delta, y}}{\partial \delta} + \left(\frac{N-2}{2} \right) U_{\delta, y} \right].
\]

We further note that since \((\delta_0, y_0)\) is a critical point of \(\Gamma \), we have that \(U_{\delta_0, y_0} \) satisfies the Pohozaev identities in (2.2)–(2.3). We now compute \(D^2 \Lambda(\delta_0, y_0) \). We have,

\[
\frac{\partial \Lambda}{\partial \delta}(\delta, y) = \int_{\mathbb{R}^N} x \cdot \nabla K(\delta x + y) U_{1,0}^{\frac{2N}{N-2}}(x) dx,
\]

\[
\frac{\partial \Lambda}{\partial y_i}(\delta, y) = \frac{1}{\delta} \int_{\mathbb{R}^N} \frac{\partial K}{\partial x_i}(\delta x + y) U_{1,0}^{\frac{2N}{N-2}}(x) dx, \quad 1 \leq i \leq N.
\]

In (5.6)–(5.7) we make the change of variable \(z = \delta x + y \), use (5.3), integrate by parts and again change back to the \(x \) variable to get

\[
-\delta \frac{\partial \Lambda}{\partial \delta}(\delta, y) = N \int_{\mathbb{R}^N} K(\delta x + y) U_{1,0}^{\frac{2N}{N-2}}(x) dx
\]

\[
+ \left(\frac{2N}{N-2} \right) \int_{\mathbb{R}^N} K(\delta x + y) U_{1,0}^{\frac{2N}{N-2}}(x) (x \cdot \nabla U_{1,0}(x)) dx,
\]

\[
-\frac{\partial \Lambda}{\partial y_i}(\delta, y) = \left(\frac{2N}{N-2} \right) \int_{\mathbb{R}^N} K(\delta x + y) U_{1,0}^{\frac{2N}{N-2}}(x) \frac{\partial U_{1,0}}{\partial x_i}(x) dx, \quad 1 \leq i \leq N.
\]

Differentiating (5.8) on both sides with respect to \(\delta, y_i \) \((1 \leq i \leq N) \), noting that \(\frac{\partial \Lambda}{\partial \delta}(\delta_0, y_0) = \frac{\partial \Lambda}{\partial y_i}(\delta_0, y_0) = 0 \), changing variables as \(z = \delta x + y \), using (5.3)–(5.5) and integrating by parts, we get

\[
-\frac{\partial^2 \Lambda}{\partial \delta^2}(\delta_0, y_0) = \left(\frac{2N}{N-2} \right) \int_{\mathbb{R}^N} K(z) U_{\delta_0, y_0}^{\frac{N+2}{N-2}}(z) \frac{\partial U_{\delta_0, y_0}}{\partial \delta}(z) dz
\]

\[
+ \int_{\mathbb{R}^N} K(z) U_{\delta_0, y_0}^{\frac{N+2}{N-2}}(z) (z - y_0) \cdot \nabla \left(\frac{\partial U_{\delta_0, y_0}}{\partial \delta} \right) dz
\]

\[
+ \left(\frac{N+2}{N-2} \right) \int_{\mathbb{R}^N} K(z) U_{\delta_0, y_0}^{\frac{N+2}{N-2}}(z) (z - y_0) \cdot \nabla U_{\delta_0, y_0}(z) \frac{\partial U_{\delta_0, y_0}}{\partial \delta}(z) dz,
\]

\[
-\frac{\partial^2 \Lambda}{\partial \delta \partial y_i}(\delta_0, y_0) = \left(\frac{2N}{N-2} \right) \int_{\mathbb{R}^N} K(z) U_{\delta_0, y_0}^{\frac{N+2}{N-2}}(z) \frac{\partial}{\partial z_i} \left(\frac{\partial U_{\delta_0, y_0}}{\partial \delta} \right)(z) dz
\]

\[
+ \left(\frac{N+2}{N-2} \right) \int_{\mathbb{R}^N} K(z) U_{\delta_0, y_0}^{\frac{N+2}{N-2}}(z) \frac{\partial}{\partial z_i} \left(\frac{\partial U_{\delta_0, y_0}}{\partial \delta} \right)(z) dz.
\]
In deriving (5.11) we need to additionally use that the Pohozaev identity (2.2) holds for U_{δ_0,y_0} in the last step.

Again, for $1 \leq i, j \leq N$, differentiating (5.9) with respect to y_j, using (5.3)–(5.5) and integrating by parts, we get

$$- \frac{\partial^2 \Lambda}{\partial y_i \partial y_j}(\delta_0,y_0) = \left(\frac{2N}{N-2} \right) \int_{\mathbb{R}^N} K(z) U^{\frac{N+2}{2}}_{\delta_0,y_0}(z) \frac{\partial}{\partial z_j} \left(\frac{\partial U_{\delta_0,y_0}}{\partial z_i}(z) \right) dz$$

(5.12)

$$+ \left(\frac{N+2}{N-2} \right) \int_{\mathbb{R}^N} K(z) U_{\delta_0,y_0}(z) \frac{\partial U_{\delta_0,y_0}}{\partial z_j}(z) \frac{\partial U_{\delta_0,y_0}}{\partial z_i}(z) dz.$$

Let w be as in (5.2). Using (3.2)–(3.3) we can easily check that (5.10)–(5.12) imply that $D^2 \Gamma(\delta_0,y_0) \cdot (c_0,c_1,\ldots,c_N)^T = 0$.

Acknowledgment

I would like to thank Professor Massimo Grossi for helpful discussions and the anonymous referee for suggestions that improved the presentation of the paper.

References

TIFR Centre, Indian Institute of Science Campus, P.B. No. 1234, Bangalore - 560 012, India