FENCHEL DUALITY, FITZPATRICK FUNCTIONS AND THE EXTENSION OF FIRMLY NONEXPANSIVE MAPPINGS

HEINZ H. BAUSCHKE

(Communicated by Jonathan M. Borwein)

Abstract. Recently, S. Reich and S. Simons provided a novel proof of the Kirszbraun-Valentine extension theorem using Fenchel duality and Fitzpatrick functions. In the same spirit, we provide a new proof of an extension result for firmly nonexpansive mappings with an optimally localized range.

Throughout this paper, we assume that X is a real Hilbert space, with inner product $p = \langle \cdot | \cdot \rangle$ and induced norm $\| \cdot \|$, and we denote the identity mapping on X by Id. A mapping T from a subset D of X to X is called firmly nonexpansive if

\begin{equation}
(\forall x \in D)(\forall y \in D) \quad \|Tx - Ty\|^2 + \| (\text{Id} - T)x - (\text{Id} - T)y\|^2 \leq \|x - y\|^2;
\end{equation}

equivalently \[13,14\], if $2T - \text{Id}$ is nonexpansive (Lipschitz continuous with constant 1), i.e.,

\begin{equation}
(\forall x \in D)(\forall y \in D) \quad \| (2T - \text{Id})x - (2T - \text{Id})y\| \leq \|x - y\|
\end{equation}

or if

\begin{equation}
(\forall x \in D)(\forall y \in D) \quad 0 \leq \langle Tx - Ty | (\text{Id} - T)x - (\text{Id} - T)y\rangle.
\end{equation}

Firmly nonexpansive mappings play an important role in various contexts; see, e.g., \[1,2,3,7,8,9,10,15,17,21,22,25\]. The Kirszbraun-Valentine theorem (see, e.g., \[5,13,16,20,26\]) states that any nonexpansive mapping can be extended to a nonexpansive mapping defined on the whole space. A beautiful proof of this result, based on Fenchel duality and Fitzpatrick functions, was recently provided by Reich and Simons \[23\]. (For further applications of Fitzpatrick functions, see, e.g., \[4,24\].) In this note, we refine their technique to obtain a new proof of an extension theorem for firmly nonexpansive mappings where the range of the extension is optimally localized. This extension theorem easily implies the Kirszbraun-Valentine result. Notation not explicitly defined in the following is standard in convex analysis; see, e.g., \[27\].
Definition 1. Let D be a nonempty subset of X and let $T : D \to X$ be firmly nonexpansive. Then the associated Fitzpatrick function ϕ_T is

$\phi = \phi_T$ in $X \times X \to]-\infty, +\infty] : (x, y) \mapsto \sup_{d \in D} \langle x \mid d - Td \rangle + \langle y \mid Td \rangle - \langle d - Td \rangle$,

and we also set $G = G_T = \{(d - Td, Td) \mid d \in D\}$.

Proposition 2. Let D be a nonempty subset of X, let $T : D \to X$ be firmly nonexpansive, and let x and y be in X. Then:

(i) $\phi = (\iota_G + p)^\ast$.

(ii) The extension $\overline{\phi} : D \cup \{y\} \to X$ of ϕ which maps y to x is still firmly nonexpansive if and only if $\phi(x - x, x) \leq p(y - x, x)$.

(iii) ϕ is convex, lower semicontinuous and proper.

(iv) $\text{conv} G \subset \text{dom} \phi \ast \subset \text{conv} \{\text{Id} - T\}(D) \times \text{conv} T(D)$.

(v) $p \leq \phi^\ast$.

Proof. Fix x and y in X. (i) For every $d \in D$, we have

$\langle x \mid d - Td \rangle + \langle y \mid Td \rangle - \langle d - Td \rangle = \langle (d - Td, Td) \mid (x, y) \rangle - (p + \iota_G)(d - Td, Td)$,

from which the identity follows by supremizing over $d \in D$. (ii) This is a consequence of (ii). By (ii) $\phi \leq p$ on G. Hence ϕ is proper. The function ϕ is convex and lower semicontinuous, as it is a Fenchel conjugate by (i). (iv): ϕ is convex and lower semicontinuous, as it is a Fenchel conjugate by (i). (v) In view of (ii), $p(G - G) \subset [0, +\infty]$. Suppose that $(x, y) \in \text{conv} G$, say it is a finite convex combination $(x, y) = \sum_{i \in I} \lambda_i (x_i, y_i)$ of elements in G. Then $\sum_{i \in I} \lambda_i p(x_i, y_i) = p(x, y) + \frac{1}{2} \sum_{i, j \in I} p((x, y) - (x_j, y_j)) \geq p(x, y)$, hence $p \leq \text{conv}(\iota_G + p)$. Since p is continuous, it follows that $p \leq \text{conv}(\iota_G + p) = (\iota_G + p)^\ast = \phi^\ast$. □

Fact 3 (Fenchel duality). Let Y be a real Hilbert space and let $L : Y \to X$ be linear and continuous. Let $f : Y \to]-\infty, +\infty]$ and $g : X \to]-\infty, +\infty]$ be convex, lower semicontinuous, and proper such that g is continuous and finite at some point in $L \text{dom} f$. Then

$\inf_{y \in Y} \{f(y) + g(Ly)\} = -\min_{x \in X} \{f^\ast(-L^\ast x) + g^\ast(x)\}$.

Proof. See, e.g., [27, Corollary 2.8.5]. □

Theorem 4. Let D be a nonempty subset of X, let $T : D \to X$ be firmly nonexpansive, and let $y \in X$. Then T has a firmly nonexpansive extension $\overline{T} : D \cup \{y\} \to \text{conv} T(D)$.

Proof. Set $\phi = \phi_T$ and $C = \text{conv} T(D)$, and assume first that $y = 0$. In view of Proposition 2(ii) we must show that

$\min_{x \in X} \phi(x, -x) + \|x\|^2 + \iota_C(x) \leq 0$.

Set $f : X \times X \to]-\infty, +\infty] : (x, y) \mapsto \frac{1}{2} \phi^\ast(2x, 2y)$ so that $f^\ast = \frac{1}{2} \phi^\ast$, and let $j = \frac{1}{2} \| \cdot \|^2$. Now set $g = (j + \iota_C)^\ast$ and observe (using [14]) that $g = j \iota_{d_C} = j - (j \boxplus \iota_C) = j - \frac{1}{2} d_C^2$, where \boxplus denotes the infimal convolution and d_C the distance function. Further set $L : X \times X \to X : (x^*, y^*) \mapsto y^* - x^*$. We claim that $\inf_{(x^*, y^*) \in X \times X} f(x^*, y^*) + g(L(x^*, y^*)) \geq 0$. Indeed, pick $(x^*, y^*) \in \text{dom} f$. By
Proposition \([\mathbf{iv}]\) \((2x^*, 2y^*) \in \text{dom } \phi^* \subset X \times C\) and hence \(2y^* \in C\). Using Proposition \([\mathbf{iv}]\) we deduce that

\begin{align}
0 &= 4 \langle x^* | y^* \rangle + \|y^* - x^*\|^2 - \|x^* + y^*\|^2 \\
&= p(2x^*, 2y^*) + \|y^* - x^*\|^2 - \|\langle y^* - x^* \rangle - 2y^*\|^2 \\
&\leq \phi^*(2x^*, 2y^*) + \|y^* - x^*\|^2 - d^2_C(y^* - x^*) \\
&= 2 \langle f(x^*, y^*) + g(y^* - x^*) \rangle \\
&= 2 \langle f(x^*, y^*) + g(L(x^*, y^*)) \rangle.
\end{align}

Hence \(\inf(f + gL)(X \times X) \geq 0\) and, since \(\text{dom } g = X\), Fact \([\mathbf{iii}]\) now implies that

\begin{equation}
\min_{x \in X} f^*(-L^*x) + g^*(x) \leq 0.
\end{equation}

Since \(f^* = \frac{1}{\lambda} \phi\), \(g^* = j + \iota_C\), and \(L^*: X \to X \times X: x \mapsto (-x, x)\), we see that \([\mathbf{13}]\) clearly yields \([\mathbf{7}]\).

Now assume that \(y \neq 0\). Let \(E = D - y\) and define \(U: E \to X: z \mapsto T(z + y)\). Then \(U\) is firmly nonexpansive and \(U(E) = T(D)\). By what we just proved, there exists an extension \(\tilde{U}: E \cup \{0\} \to \text{conv } U(E) = \text{conv } T(D)\). Therefore, \(\tilde{T}: D \cup \{y\} \to \text{conv } T(D): z \mapsto \tilde{U}(z - y)\) is as required. \(\square\)

Corollary 5. Let \(D\) be a nonempty subset of \(X\) and let \(T: D \to X\) be firmly nonexpansive. Then \(T\) has a firmly nonexpansive extension \(\hat{T}: X \to \text{conv } T(D)\).

Proof. Let \(\mathcal{M}\) be the set of all pairs \((U, E)\), where \(D \subset E \subset X\) and \(U: E \to \text{conv } T(D)\) is a firmly nonexpansive extension of \(T\). Partially order \(\mathcal{M}\) via \((U_1, E_1) \preceq (U_2, E_2)\) if \(E_1 \subset E_2\) and \(U_2\) extends \(U_1\). Zorn’s lemma guarantees the existence of a maximal element \((\hat{T}, \hat{D})\). Now Theorem \([\mathbf{4}]\) shows that \(\hat{D} = X\). \(\square\)

Remark 6 (range localization is optimal). The conclusion that the range of the extension \(\hat{T}\) lies in the closed convex hull of \(T(D)\) cannot be improved upon in general. Indeed, let \(D\) be a nonempty subset of \(X\), let \(T\) be Id \(\mid_D\), and let \(\hat{T}: X \to X\) be any firmly nonexpansive extension of \(T\). Then \(D = \text{Fix } T \subset \text{Fix } \hat{T}\), and the last set is closed and convex \([\mathbf{13}, \mathbf{14}]\). Hence \(C = \text{conv } T(D) = \text{conv } D \subset \text{Fix } \hat{T} \subset \hat{T}(X)\). In particular, let \(\hat{T}: X \to C\) be any firmly nonexpansive extension of \(T\) as in Corollary \([\mathbf{5}]\) Then \(\hat{T}(X) = C\) and \(\hat{T}|C = \text{Id } |_C\); therefore, \(\hat{T}\) is the projector onto \(C\).

Corollary 7 (Kirszbraun-Valentine). Let \(D\) be a nonempty subset of \(X\) and let \(N: D \to X\) be nonexpansive. Then \(N\) has a nonexpansive extension \(\tilde{N}: X \to \text{conv } N(D)\).

Proof. (See also \([\mathbf{13}, \mathbf{16}, \mathbf{20}, \mathbf{26}]\) for different proofs and related results.) Let \(T = \frac{1}{2} \text{Id } \mid_D + \frac{1}{2} N\), which is firmly nonexpansive. Corollary \([\mathbf{5}]\) guarantees a firmly nonexpansive extension \(\hat{T}: X \to \text{conv } T(D)\). Let \(P\) be the (firmly) nonexpansive projector onto \(\text{conv } N(D)\). Then \(\tilde{N} = P \circ (2\hat{T} - \text{Id})\) is as required. \(\square\)

Remark 8. We do not know whether it is possible to deduce Corollary \([\mathbf{5}]\) from Corollary \([\mathbf{7}]\). The following technique of going back and forth between firmly nonexpansive and nonexpansive mappings, utilized in the proof of Corollary \([\mathbf{7}]\), does not work in reverse. Let \(D\) be a nonempty subset of \(X\) and \(T: D \to X\) be firmly nonexpansive. Then \(N = 2T - \text{Id } \mid_D: D \to X\) is nonexpansive, and hence (by
Corollary [7] it has an extension \(\tilde{N} : X \to \text{conv} N(D) \). It is tempting to conjecture that \(\tilde{T} = \frac{1}{2} \text{Id} + \frac{1}{2} \tilde{N} \) would be an extension of \(T \) as in Corollary [5]. However, let us concretely consider \(D = \{0\} \subset X \) and \(T : D \to X : 0 \mapsto 0 \). Then \(N = 2T - \text{Id}_D = T \) and so \(\tilde{N} \equiv 0 \). Hence \(\tilde{T} = \frac{1}{2} \text{Id} \), which does not satisfy \(\tilde{T}(X) \subset \text{conv} T(D) = \{0\} \).

Remark 9. The correspondence revealed by Minty [18] between (maximal) monotone operators and firmly nonexpansive mappings (with full domain) provides a reformulation of Theorem [1] in terms of monotone operators (see, e.g., [6, Theorem 2.1]), which in turn relates to the work of Debrunner and Flor [11]. The new proof presented here provides a convex-analytical handle on these results (see also [4]). Furthermore, in the present Hilbert space setting, Reich ([21, Lemma 2.1]) showed that Corollary [5] is equivalent to the following result. Let \(A \) be a monotone operator on \(X \) with a nonempty graph. Then \(A \) has a maximal monotone extension \(\hat{A} \) such that \(\text{conv} \text{dom} A = \text{conv} \text{dom} \hat{A} \). (In fact, his result is about accretive operators in general Banach spaces.) Using [21, Proposition 2.2], it follows that Corollary [5] actually characterizes Hilbert spaces among all Banach spaces of dimension not less than three.

ACKNOWLEDGMENT

The author wishes to thank the referee for his insightful comments. H. H. Bauschke’s work was partially supported by the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

Department of Mathematics, Irving K. Barber School, University of British Columbia Okanagan, Kelowna, British Columbia, Canada V1V 1V7

E-mail address: heinz.bauschke@ubc.ca

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use