Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Regularity of solutions to stochastic Volterra equations with infinite delay


Authors: Anna Karczewska and Carlos Lizama
Journal: Proc. Amer. Math. Soc. 135 (2007), 531-540
MSC (2000): Primary 60H20; Secondary 60H05, 45D05.
Published electronically: August 2, 2006
MathSciNet review: 2255300
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we give necessary and sufficient conditions providing regularity of solutions to stochastic Volterra equations with infinite delay on a $ d$-dimensional torus. The harmonic analysis techniques and stochastic integration in function spaces are used. The work applies to both the stochastic heat and wave equations.


References [Enhancements On Off] (What's this?)

  • 1. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • 2. Philippe Clément and Giuseppe Da Prato, Some results on stochastic convolutions arising in Volterra equations perturbed by noise, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7 (1996), no. 3, 147–153 (English, with English and Italian summaries). MR 1454409
  • 3. Ph. Clément and G. Da Prato, Existence and regularity results for an integral equation with infinite delay in a Banach space, Integral Equations Operator Theory 11 (1988), no. 4, 480–500. MR 950513, 10.1007/BF01199303
  • 4. Robert C. Dalang and N. E. Frangos, The stochastic wave equation in two spatial dimensions, Ann. Probab. 26 (1998), no. 1, 187–212. MR 1617046, 10.1214/aop/1022855416
  • 5. C. Gasquet and P. Witomski, Fourier analysis and applications, Texts in Applied Mathematics, vol. 30, Springer-Verlag, New York, 1999. Filtering, numerical computation, wavelets; Translated from the French and with a preface by R. Ryan. MR 1657104
  • 6. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products, Corrected and Enlarged Revision, Academic Press, San Diego, New York, London, Tokyo, 1980.
  • 7. G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and its Applications, vol. 34, Cambridge University Press, Cambridge, 1990. MR 1050319
  • 8. Anna Karczewska and Jerzy Zabczyk, A note on stochastic wave equations, Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998) Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 501–511. MR 1818028
  • 9. Anna Karczewska and Jerzy Zabczyk, Stochastic PDE’s with function-valued solutions, Infinite dimensional stochastic analysis (Amsterdam, 1999) Verh. Afd. Natuurkd. 1. Reeks. K. Ned. Akad. Wet., vol. 52, R. Neth. Acad. Arts Sci., Amsterdam, 2000, pp. 197–216. MR 1832378
  • 10. Anna Karczewska and Jerzy Zabczyk, Regularity of solutions to stochastic Volterra equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 (2000), no. 3, 141–154 (2001) (English, with English and Italian summaries). MR 1841688
  • 11. N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027
  • 12. Annie Millet and Marta Sanz-Solé, A stochastic wave equation in two space dimension: smoothness of the law, Ann. Probab. 27 (1999), no. 2, 803–844. MR 1698971, 10.1214/aop/1022677387
  • 13. Carl Mueller, Long time existence for the wave equation with a noise term, Ann. Probab. 25 (1997), no. 1, 133–151. MR 1428503, 10.1214/aop/1024404282
  • 14. Jace W. Nunziato, On heat conduction in materials with memory, Quart. Appl. Math. 29 (1971), 187–204. MR 0295683
  • 15. Jan Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. MR 1238939
  • 16. M. Reed, B. Simon, Methods of modern mathematical physics, Vol. II, Academic Press, New York, 1975.
  • 17. Laurent Schwartz, Méthodes mathématiques pour les sciences physiques, Enseignement des Sciences, Hermann, Paris, 1961 (French). MR 0143360
  • 18. Daniel W. Stroock, Probability theory, an analytic view, Cambridge University Press, Cambridge, 1993. MR 1267569

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 60H20, 60H05, 45D05.

Retrieve articles in all journals with MSC (2000): 60H20, 60H05, 45D05.


Additional Information

Anna Karczewska
Affiliation: Department of Mathematics, University of Zielona Góra, ul. Szafrana 4a, 65-246 Zielona Góra, Poland
Email: A.Karczewska@im.uz.zgora.pl

Carlos Lizama
Affiliation: Departamento de Matemática, Facultad de Ciencias, Universidad de Santiago de Chile, Casilla 307-Correo 2, Santiago, Chile
Email: clizama@lauca.usach.cl

DOI: https://doi.org/10.1090/S0002-9939-06-08487-5
Keywords: Stochastic Volterra equation, function-valued solutions, equations on a torus, spatially homogeneous Wiener process
Received by editor(s): April 15, 2005
Received by editor(s) in revised form: August 25, 2005
Published electronically: August 2, 2006
Additional Notes: The second author was supported in part by FONDECYT Grant #1050084
Communicated by: Richard C. Bradley
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.