Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Globalizations of partial actions on nonunital rings


Authors: Michael Dokuchaev, Ángel Del Río and Juan Jacobo Simón
Journal: Proc. Amer. Math. Soc. 135 (2007), 343-352
MSC (2000): Primary 16S99; Secondary 16S10, 16S34, 16S35
DOI: https://doi.org/10.1090/S0002-9939-06-08503-0
Published electronically: August 28, 2006
MathSciNet review: 2255280
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this note we prove a criteria for the existence of a globalization for a given partial action of a group on an $ s$-unital ring. If the globalization exists, it is unique in a natural sense. This extends the globalization theorem from Dokuchaev and Exel, 2005, obtained in the context of rings with $ 1.$


References [Enhancements On Off] (What's this?)

  • 1. F. Abadie, Enveloping actions and Takai duality for partial actions, J. Funct. Analysis, 197 (2003), (1), 14-67. MR 1957674 (2004c:46130)
  • 2. F. Abadie, On partial actions and groupoids, Proc. Am. Math. Soc., 132 (2004), (4), 1037- 1047. MR 2045419 (2005c:46073)
  • 3. G. Abrams, J. Haefner, A. del Río, Approximating rings with local units via automorphisms, Acta. Math. Hungar., 82 (1999), (3), 229-248. MR 1674088 (2000b:16064)
  • 4. W. Cortes, M. Ferrero, Partial Skew Polynomial Rings: Prime and Maximal Ideals, Preprint.
  • 5. J. Cuntz, W. Krieger, a class of $ C^{\ast}$-algebras and topological Markov chains, Inventiones Math., 56 (1980), 251-268. MR 0561974 (82f:46073a)
  • 6. M. Dokuchaev, R. Exel, Associativity of crossed products by partial actions, enveloping actions and partial representations, Trans. Am. Math. Soc., 357 (2005), 1931-1952. MR 2115083 (2005i:16066)
  • 7. M. Dokuchaev, M. Ferrero, A. Paques, Partial Galois theory of commutative rings, Preprint.
  • 8. R. Exel, Circle actions on $ C^{\ast}$-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences, J. Funct. Anal., 122 (1994), (3), 361-401. MR 1276163 (95g:46122)
  • 9. R. Exel, Twisted partial actions: a classification of regular $ C^{\ast}$-algebraic bundles, Proc. London Math. Soc., 74 (1997), (3), 417-443. MR 1425329 (98d:46075)
  • 10. R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Am. Math. Soc., 126 (1998), (12), 3481-3494. MR 1469405 (99b:46102)
  • 11. R. Exel, Amenability for Fell Bundles, J. Reine Angew. Math., 492 (1997), 41-73. MR 1488064 (99a:46131)
  • 12. R. Exel, M. Laca, Cuntz-Krieger Algebras for Infinite Matrices, J. Reine Angew. Math., 512 (1999), 119-172. MR 1703078 (2000i:46064)
  • 13. M. Ferrero, Partial actions of groups on semiprime rings, Preprint.
  • 14. J. L. Garciá, J. J. Simón, Morita equivalence for idempotent rings, J. Pure Appl. Algebra, 76 (1991), (1), 39-56. MR 1140639 (93b:16010)
  • 15. J. Kellendonk, M. V. Lawson, Partial actions of groups, Internat. J. Algebra Comput., 14 (2004), (1), 87-114. MR 2041539 (2004m:20120)
  • 16. K. McClanahan, K-theory for partial crossed products by discrete groups, J. Funct. Anal., 130 (1995), 77-117. MR 1331978 (96i:46083)
  • 17. G. J. Murphy, $ C^{\ast}$-algebras and operator theory, Academic Press, Inc., Boston 1990. MR 1074574 (91m:46084)
  • 18. B. Steinberg, Partial actions of groups on cell complexes, Monatsh. Math., 138 (2003), (2), 159-170. MR 1964463 (2004e:57006)
  • 19. R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, London 1991. MR 1144522 (92i:16001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 16S99, 16S10, 16S34, 16S35

Retrieve articles in all journals with MSC (2000): 16S99, 16S10, 16S34, 16S35


Additional Information

Michael Dokuchaev
Affiliation: Departamento de Matemática, Universidade de São Paulo, Brazil
Email: dokucha@ime.usp.br

Ángel Del Río
Affiliation: Departamento de Matemáticas, Universidad de Murcia, Spain
Email: adelrio@um.es

Juan Jacobo Simón
Affiliation: Departamento de Matemáticas, Universidad de Murcia, Spain
Email: jsimon@um.es

DOI: https://doi.org/10.1090/S0002-9939-06-08503-0
Received by editor(s): April 26, 2005
Received by editor(s) in revised form: September 20, 2005
Published electronically: August 28, 2006
Additional Notes: This research was supported by Capes and Fapesp of Brazil, D.G.I. of Spain and Fundación Séneca of Murcia
Communicated by: Martin Lorenz
Article copyright: © Copyright 2006 American Mathematical Society

American Mathematical Society