Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Calculation of Lefschetz and Nielsen numbers in hyperspaces for fractals and dynamical systems

Authors: J. Andres and M. Väth
Journal: Proc. Amer. Math. Soc. 135 (2007), 479-487
MSC (2000): Primary 37B99; Secondary 47H04, 47H09, 47H10, 54H25.
Published electronically: August 10, 2006
MathSciNet review: 2255294
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple argument is given as to why it is always trivial to calculate Lefschetz and Nielsen numbers for iterated function systems or dynamical systems in hyperspaces. The problem is reduced to a simple combinatorical situation on a finite set.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 37B99, 47H04, 47H09, 47H10, 54H25.

Retrieve articles in all journals with MSC (2000): 37B99, 47H04, 47H09, 47H10, 54H25.

Additional Information

J. Andres
Affiliation: Department of Mathematical Analysis, Faculty of Science, Palacký University, Tomkova 40, 779 00 Olomouc-Hejčín, Czech Republic

M. Väth
Affiliation: Department of Mathematics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
Address at time of publication: Freie Universität Berlin, Fachbereich Mathematik und Informatik (WE1), Sekretariat Prof. B. Fiedler, Arnimallee 2-6, 14195 Berlin, Germany

Keywords: Multivalued fractal, iterated function system, hyperspace, Lefschetz number, Nielsen number, ultimate range, condensing map, ANR
Received by editor(s): March 24, 2005
Received by editor(s) in revised form: September 20, 2005
Published electronically: August 10, 2006
Additional Notes: The first author was supported by the Council of Czech Government (MSM 6198959214)
This paper was written while the second author was a Heisenberg fellow of the DFG (Az. VA 206/1-1) and invited by the University of Olomouc. Financial support by the DFG is gratefully acknowledged.
Communicated by: Carmen C. Chicone
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society