ZERO DISTRIBUTION OF MÜNTZ EXTREMAL POLYNOMIALS IN $L_p[0,1]$

D. S. LUBINSKY AND E. B. SAFF

(Communicated by Jonathan M. Borwein)

Abstract. Let $\{\lambda_j\}_{j=0}^{\infty}$ be a sequence of distinct positive numbers. Let $1 \leq p \leq \infty$ and let $T_{n,p} = T_{n,p}\{\lambda_0,\lambda_1,\lambda_2,\ldots,\lambda_n\}(x)$ denote the L_p extremal Müntz polynomial in $[0,1]$ with exponents $\lambda_0,\lambda_1,\lambda_2,\ldots,\lambda_n$. We investigate the zero distribution of $\{T_{n,p}\}_{n=1}^{\infty}$. In particular, we show that if
$$\lim_{n \to \infty} \frac{\lambda_n}{n} = \alpha > 0,$$
then the normalized zero counting measure of $T_{n,p}$ converges weakly as $n \to \infty$ to
$$\frac{\alpha}{\pi} \frac{t^{\alpha-1}}{\sqrt{t^\alpha (1-t^\alpha)}} dt,$$
while if $\alpha = 0$ or ∞, the limiting measure is a Dirac delta at 0 or 1, respectively.

1. Introduction and Results

Let $\lambda_1, \lambda_2, \ldots$ be a sequence of distinct positive numbers. An expression of the form

$$(1.1) \quad \sum_{j=0}^{n} c_j x^{\lambda_j}$$

is called a Müntz polynomial. The name refers, of course, to the famous theorem of Müntz that if $\inf_j \lambda_j > 0$, these polynomials are dense in L_p spaces iff
$$\sum_{j=0}^{\infty} \frac{1}{\lambda_j} = \infty.$$

Müntz polynomials share many of the properties of ordinary algebraic polynomials. The most fundamental is that a polynomial of the form (1.1) has at most n distinct zeros in $(0, \infty)$, or is identically zero.

Müntz extremal polynomials are generalizations of classical orthogonal and Chebyshev polynomials. They have been investigated by, amongst others, Borwein and Erdelyi [2] and Milovanovic and his coworkers [3]. Let $1 \leq p \leq \infty$. We denote by
\[T_{n,p}(x) = T_{n,p}\{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\}(x) \text{ the linear combination of } \{x^{\lambda_j}\}_{j=0}^n \text{ with the coefficient of } x^{\lambda_n} \text{ equal to 1, satisfying} \]

\[\|T_{n,p}\{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\}\|_{L^p[0,1]} = \min_{c_0,\ldots,c_{n-1}} \|x^{\lambda_n} - \sum_{j=0}^{n-1} c_j x^{\lambda_j}\|_{L^p[0,1]} . \]

It is known that \(T_{n,p} \) exists and is unique, has exactly \(n \) distinct (and simple) zeros in \((0,1)\), and the zeros of \(T_{n,p} \) and \(T_{n+1,p} \) interlace. Moreover, if we swap \(\lambda_n \) with some \(\lambda_j \), the extremal polynomial changes only by a non-zero multiplicative constant. Thus when dealing with a fixed \(n \), and studying zeros of extremal polynomials, we may assume that \(\{\lambda_j\}_{j=0}^n \) are in increasing order. However, we shall not need to assume that \(\{\lambda_j\}_{j=0}^\infty \) is increasing. Concerning the zeros as \(n \to \infty \), an important result of Borwein [2, Thm. 4.1.1, p. 155] asserts that the corresponding Müntz polynomials are dense iff the maximum spacing between successive zeros of \(T_{n,p} \) has limit 0 as \(n \to \infty \). Saff and Varga [6] studied the related zero distribution of lacunary incomplete polynomials.

In this paper, we study the asymptotic zero distribution of \(\{T_{n,p}\}_{n=1}^\infty \). Let \(\nu_n \) denote the normalized zero counting measure of \(T_{n,p} \), so that

\[\nu_n([a,b]) = \frac{1}{n} \times \text{number of zeros of } T_{n,p} \text{ in } [a,b]. \]

In the case of polynomials, where \(\lambda_j = j \), \(j \geq 0 \), it is a classical result [5, pp. 169–170], [7, Thm. 3.4.1, p. 84 and Thm. 3.6.1, p. 98] that for \(0 \leq a < b \leq 1 \),

\[\lim_{n \to \infty} \nu_n([a,b]) = \int_a^b \frac{dx}{\pi \sqrt{x(1-x)}}. \]

Equivalently we write

\[d\nu_n \overset{s}{\to} \frac{dx}{\pi \sqrt{x(1-x)}}, \quad n \to \infty, \]

and say that \(d\nu_n \) converges weakly to the arcsine distribution on \([0,1]\). This type of result has been studied in detail for the case \(p = 2 \) of orthogonal polynomials, and when there is a weight \(w \) in the norm in (1.2). The monograph of Stahl and Totik [7] gives a comprehensive account, while the monograph of Andrievskii and Blatt [1] considers discrepancy, or rate of convergence, to the limiting distribution.

In a loose sense, our conclusion is that when \(\lim_{n \to \infty} \lambda_n/n \) exists, all the possible zero distributions are those provided by

\[\lambda_j = \alpha j, \quad j \geq 0, \]

for some \(\alpha \in [0,\infty] \). Extremal polynomials for these exponents are essentially \(L_p \) extremal polynomials with the substitution of variable \(x = t^\alpha \). Accordingly, we define for \(0 < \alpha < \infty \), a probability measure on \((0,1)\),

\[d\mu_\alpha(t) = \frac{\alpha}{\pi} \frac{t^{\alpha-1}}{\sqrt{t^\alpha(1-t^\alpha)}} dt. \]

For \(\alpha = 0 \), we set

\[d\mu_0 = d\delta_0, \]
a unit mass at 0, and for $\alpha = \infty$, we set
\begin{equation}
(1.5) \quad d\mu_{\infty} = d\delta_{1},
\end{equation}
a unit mass at 1. We prove:

Theorem 1.1. Let $1 \leq p \leq \infty$, $0 \leq \alpha \leq \infty$, and let $\{\lambda_j\}_{j=0}^{\infty}$ denote a sequence of distinct positive numbers with
\begin{equation}
(1.6) \quad \lim_{j \to \infty} \frac{\lambda_j}{j} = \alpha.
\end{equation}
Then if $0 \leq a \leq b \leq 1$,
\begin{equation}
(1.7) \quad \lim_{n \to \infty} \nu_n([a, b]) = \mu_{\alpha}([a, b]),
\end{equation}
that is,
\begin{equation}
(1.8) \quad d\nu_n \star\to d\mu_{\alpha}, \quad n \to \infty.
\end{equation}

Remarks. (a) An interesting feature of the theorem is that asymptotic zero distribution has no relation to the density of Müntz polynomials—in stark contrast to the Borwein-Erdelyi result on spacing. Thus if $\lambda_n = n \log n, n \geq 2$, then the corresponding Müntz polynomials are dense, while the asymptotic zero distribution is a Dirac delta at 1. If $\lambda_n = n^2, n \geq 0$, then the limiting zero distribution is still a Dirac delta at 1, but the corresponding Müntz polynomials are not dense.

(b) We can somewhat weaken the hypothesis (1.6): roughly speaking we can ignore $o(n)$ of the exponents in $\{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\}$. To make this more precise, assume $\alpha < \infty$. We write
\begin{equation}
(1.9) \quad \lim_{j \to \infty \text{ a.e.}} \frac{\lambda_j}{j} = \alpha
\end{equation}
if for each $\varepsilon \in (0, 1)$, there exists for large enough n, a set
\begin{equation}
(1.10) \quad S_{n, \varepsilon} \subset \{0, 1, 2, \ldots, n\}
\end{equation}
with at most εn elements such that
\begin{equation}
(1.11) \quad j \in \{0, 1, 2, \ldots, n\} \setminus S_{n, \varepsilon} \Rightarrow \left| \frac{\lambda_j}{j} - \alpha \right| < \varepsilon.
\end{equation}
In the case $\alpha = \infty$, we replace this with the fact that for each $K > 0$, there exists for large enough n, a set $S_{n, \varepsilon} \subset \{0, 1, 2, \ldots, n\}$ with at most εn elements such that
\begin{equation}
(1.12) \quad j \in \{0, 1, 2, \ldots, n\} \setminus S_{n, \varepsilon} \Rightarrow \frac{\lambda_j}{j} > K.
\end{equation}

Theorem 1.2. Let $1 \leq p \leq \infty$, $0 \leq \alpha \leq \infty$, and $\{\lambda_j\}_{j=0}^{\infty}$ denote a sequence of distinct positive numbers with
\begin{equation}
(1.13) \quad \lim_{j \to \infty \text{ a.e.}} \frac{\lambda_j}{j} = \alpha.
\end{equation}
Then the conclusion (1.7) of Theorem 1.1 persists.

We shall also show that one cannot ignore more than $o(n)$ exponents in $\{\lambda_j\}_{j=0}^{n}$ without affecting the zero distribution.
Theorem 1.3. Let $1 \leq p \leq \infty$ and $\varepsilon \in (0, 1)$. Let $\{\lambda_j\}_{j=0}^{\infty}$, $\{\gamma_j\}_{j=0}^{\infty}$, $\{\rho_j\}_{j=0}^{\infty}$ denote sequences of distinct positive numbers with

\begin{equation}
\lim_{j \to \infty} \frac{\gamma_j}{j} = 0, \quad \lim_{j \to \infty} \frac{\rho_j}{j} = \infty.
\end{equation}

Assume also that for large enough n, there is the disjoint union

\begin{equation}
\{\lambda_j\}_{j=0}^{n} := \{\gamma_j\}_{j=0}^{k(n)} \cup \{\rho_j\}_{j=0}^{\ell(n)},
\end{equation}

where

\[\lim_{n \to \infty} \frac{k(n)}{n} = \varepsilon. \]

Then

\begin{equation}
d\nu_n \to^* \varepsilon \, d\mu_0 + (1 - \varepsilon) \, d\mu_\infty, \quad n \to \infty.
\end{equation}

We are not sure if this result generalizes to the case where 0 and ∞ are replaced in (1.12) by other limits. What is clear is that for a general choice of $\{\lambda_j\}_{j=0}^{\infty}$, the asymptotic zero distribution can be quite complicated, and there need not be a weak limit. For example, by adjoining sufficiently large blocks of exponents $\{a_j\}_{j=n}^{\infty}$, one may construct $\{\lambda_n\}_{n=0}^{\infty}$ such that each $\mu_n, n \in [0, \infty]$, is a weak limit of some subsequence of $\{\nu_n\}$. We prove the results in the next section.

2. Proofs

We begin with some notation. We abbreviate $T_{n,p} \{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\}$ as $T_{n,p} \{\lambda_0 \cdots \lambda_n\}$ and $Z_p (\lambda_0 \cdots \lambda_n) [a, b]$ denote the total number of zeros of $T_{n,p} \{\lambda_0 \cdots \lambda_n\} (x)$ in $[a, b]$. We say that $\{\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_m\}$ is a refinement of $\{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\}$ if

\[\{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\} \subset \{\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_m\}. \]

The main tools of the proof are interlacing properties of successive Chebyshev polynomials, monotonicity properties with respect to the exponents, and zero distribution for the specific choice $\{\alpha_j\}_{j=0}^{\infty}$.

Lemma 2.1. Let $\{\gamma_j\}_{j=0}^{m}$ be distinct positive numbers and let $\{\lambda_j\}_{j=0}^{n}$ be distinct positive numbers.

(a) Suppose that $\{\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_m\}$ is a refinement of $\{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\}$. Then for $[a, b] \subset [0, 1]$,

\begin{equation}
|Z_p (\lambda_0 \cdots \lambda_n) [a, b] - Z_p (\gamma_0 \cdots \gamma_m) [a, b]| \leq 2(m - n).
\end{equation}

(b) Suppose that $\{\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_k\} \subset \{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\}$ have ℓ exponents in common. Then for $[a, b] \subset [0, 1]$,

\begin{equation}
|Z_p (\lambda_0 \cdots \lambda_n) [a, b] - Z_p (\gamma_0 \cdots \gamma_k) [a, b]| \leq 2(n + k + 2 - 2\ell).
\end{equation}

Proof. (a) We may rewrite $\{\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_m\}$ as $\{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_m\}$. Since any subset of $\{x^{\lambda_0}, x^{\lambda_1}, \ldots, x^{\lambda_m}\}$ is a Chebyshev system on $[\varepsilon, 1]$ for any $0 < \varepsilon < 1$, the zeros of $T_{n,p} \{\lambda_0 \cdots \lambda_j\} (x)$ and $T_{n,p} \{\lambda_0 \cdots \lambda_j+1\} (x)$ interlace [4] Corollary 1.1, p. 2. It then follows that for every interval $[a, b]$,

\[|Z_p (\lambda_0 \cdots \lambda_j) [a, b] - Z_p (\lambda_0 \cdots \lambda_j+1) [a, b]| \leq 2. \]

Applying this for $j = n, n + 1, \ldots, m$ gives (2.1).

(b) We may find a refinement of both $\{\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_k\}$ and $\{\lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n\}$ consisting of $n + k + 2 - \ell$ elements. Applying (a) to the refinement and each of
the sets \(\{ \gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_k \} \) and \(\{ \lambda_0, \lambda_1, \lambda_2, \ldots, \lambda_n \} \), and then combining the two inequalities gives the result. \(\square \)

Apart from interlacing, we shall also use the lexicographic property.

Lemma 2.2. Let \(\{ \lambda_j \}_{j=0}^n \) be a sequence of distinct positive numbers and let \(\{ \gamma_j \}_{j=0}^n \) be a sequence of distinct positive numbers with

\[
(2.3) \quad \lambda_j \leq \gamma_j, \quad 0 \leq j \leq n.
\]

Then for \(0 \leq a \leq 1 \),

\[
(2.4) \quad Z_p (\lambda_0 \cdots \lambda_n) [a, 1] \leq Z_p (\gamma_0 \cdots \gamma_n) [a, 1].
\]

Proof. We may assume that the two sets have \(n \) exponents in common. For then, one can apply the result for this special case \(n \) times, using monotonicity each time. Let \(0 < \varepsilon < 1 \). Then in \([\varepsilon, 1] \), the combined set of powers \(\{ x^{\lambda_j} \}_{j=0}^n \cup \{ x^{\gamma_j} \}_{j=0}^n \) (with duplicates deleted, and exponents placed in increasing order) is a Descartes system.

If \(T_{n,p} \{ \lambda_0 \cdots \lambda_n \} (x) \) and \(T_{n,p} \{ \gamma_0 \cdots \gamma_n \} (x) \) denote the corresponding Müntz extremal polynomials on \([\varepsilon, 1] \), it is known that the zeros of \(T_{n,p} \{ \lambda_0 \cdots \lambda_n \} (x) \) lie to the left of those of \(T_{n,p} \{ \gamma_0 \cdots \gamma_n \} (x) \), in the sense that the \(j \)-th smallest zero of the former Müntz polynomial is \(\leq \) the \(j \)-th smallest zero of the latter Müntz polynomial. For \(p = \infty \), a proof of this is given in the book of Borwein and Erdélyi \[2\] Thm. 3.3.4, pp. 116–117. For \(1 < p \leq \infty \), a proof is given in Pinkus and Ziegler \[4\] Thm. 5.1, p. 13, while when \(p = 1 \), we can apply the remarks there (or a continuity argument involving \(p \to 1^+ \)). As \(\varepsilon \to 0^+ \), \(T_{n,p} \{ \gamma_0 \cdots \gamma_n \} (x) \) must converge uniformly to \(T_{n,p} \{ \gamma_0 \cdots \gamma_n \} (x) \) because of uniqueness of \(T_{n,p} \{ \gamma_0 \cdots \gamma_n \} (x) \), and the fact that the extremal error increases as \([\varepsilon, 1] \) grows to \([0, 1] \). Hence the zeros of \(T_{n,p} \{ \lambda_0 \cdots \lambda_n \} (x) \) lie to the left of those of \(T_{n,p} \{ \gamma_0 \cdots \gamma_n \} (x) \), and \((2.4) \) follows. \(\square \)

The next result asserts essentially that if for “most” indices \(j \), we have \(\lambda_j \leq \gamma_j \), then the asymptotic proportion of zeros in \([a, 1]\) of extremal polynomials with exponents \(\{ \lambda_j \} \) does not exceed that for \(\{ \gamma_j \} \).

Lemma 2.3. Let \(\{ \lambda_j \}_{j=0}^\infty \) and \(\{ \gamma_j \}_{j=0}^\infty \) be sequences of distinct positive numbers with the following property: for each \(\varepsilon > 0 \), there exists for large enough \(n \), a set

\[
(2.5) \quad S_{n,\varepsilon} \subset \{ 0, 1, 2, \ldots, n \}
\]

with at most \(\varepsilon n \) elements such that

\[
(2.6) \quad j \in \{ 0, 1, 2, \ldots, n \} \setminus S_{n,\varepsilon} \Rightarrow \lambda_j \leq \gamma_j.
\]

Then for \(0 \leq a \leq 1 \),

\[
(2.7) \quad \limsup_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [a, 1] \leq \limsup_{n \to \infty} \frac{1}{n} Z_p (\gamma_0 \cdots \gamma_n) [a, 1]
\]

and

\[
(2.8) \quad \liminf_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [a, 1] \leq \liminf_{n \to \infty} \frac{1}{n} Z_p (\gamma_0 \cdots \gamma_n) [a, 1].
\]
Proof. Let us fix $\varepsilon > 0$, n large, and let $S_{n,\varepsilon}$ be as in the statement. We define for the given n, a modified set of exponents $\{\lambda^*_j\}_{j=0}^n$ by

$$
\lambda_j^* = \begin{cases}
\lambda_j, & j \in \{0, 1, 2, \ldots, n\} \setminus S_{n,\varepsilon}, \\
\gamma_j, & j \in S_{n,\varepsilon}.
\end{cases}
$$

Then

$$
\lambda_j^* \leq \gamma_j, \quad 0 \leq j \leq n.
$$

By the previous lemma, for $0 \leq a \leq 1$,

$$
Z_p (\lambda^*_0 \cdots \lambda^*_n) [a, 1] \leq Z_p (\gamma_0 \cdots \gamma_n) [a, 1].
$$

Also $\{\lambda^*_j\}_{j=0}^n$ and $\{\lambda_j\}_{j=0}^n$ have at least $1 + n (1 - \varepsilon)$ elements in common, so by Lemma 2.1(b),

$$
|Z_p (\lambda^*_0 \cdots \lambda^*_n) [a, 1] - Z_p (\lambda_0 \cdots \lambda_n) [a, 1]| \leq 4\varepsilon n + 4.
$$

Combining these inequalities gives

$$
Z_p (\lambda_0 \cdots \lambda_n) [a, 1] \leq Z_p (\gamma_0 \cdots \gamma_n) [a, 1] + 4\varepsilon n + 4.
$$

Dividing by n and letting $n \to \infty$ gives

$$
\limsup_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [a, 1] \leq \limsup_{n \to \infty} \frac{1}{n} Z_p (\gamma_0 \cdots \gamma_n) [a, 1] + 4\varepsilon.
$$

As $\varepsilon > 0$ is arbitrary, (2.7) follows. Similarly, (2.8) follows.

Next, we study the zero distribution for the comparison sequence $\{\alpha_j\}_{j=0}^\infty$.

Lemma 2.4. Let $\alpha \in (0, \infty)$ and

$$
\gamma_j = \alpha j, \quad j \geq 0.
$$

Then for $0 \leq a < b \leq 1$,

$$
\lim_{n \to \infty} \frac{1}{n} Z_p (\gamma_0 \cdots \gamma_n) [a, b] = \mu_\alpha ([a, b]).
$$

Proof. Suppose first that $p < \infty$. Let $T_{n,p}^*$ denote the monic (ordinary) polynomial of degree n satisfying

$$
\int_0^1 |T_{n,p}^* (x)|^p \frac{1}{\alpha} x^{1/\alpha - 1} dx = \min_{\deg(P) \leq n-1} \int_0^1 |x^n - P (x)|^p \frac{1}{\alpha} x^{1/\alpha - 1} dx.
$$

The substitution $x = t^\alpha$ gives

$$
\int_0^1 |T_{n,p}^* (t^\alpha)|^p dt = \min_{\deg(P) \leq n-1} \int_0^1 |t^{\alpha n} - P (t^\alpha)|^p dt.
$$

It follows from uniqueness that

$$
T_{n,p}^* (t^\alpha) = T_{n,p} (\gamma_0 \cdots \gamma_n) (t).
$$

We then see that the total multiplicity of zeros of $T_{n,p} (\gamma_0 \cdots \gamma_n)$ in $[a, b]$ is the total multiplicity of zeros of $T_{n,p}^*$ in $[a^\alpha, b^\alpha]$. Since the weight $\frac{1}{\alpha} x^{1/\alpha - 1}$ is positive
a.e. in \([0,1]\), classical results assert that the limiting zero distribution of \(\{T_{n,p}^*\}_{n=0}^\infty\) is the arcsine distribution \([1, \text{Cor. 5.7, p. 261}]\). Hence as \(n \to \infty\),

\[
\lim_{n \to \infty} \frac{1}{n} \times \text{number of zeros of } T_{n,p}^* \text{ in } [a,b] = \frac{1}{\pi} \int_a^b \frac{dx}{\pi x (1-x)} = \frac{\alpha}{\pi} \int_a^b \frac{t^{\alpha-1}}{\sqrt{t^\alpha (1-t^\alpha)}} dt = \int_a^b d\mu_\alpha(t).
\]

\(\square\)

Proof of Theorem 1.2 Our hypothesis is

\[\lim_{j \to \infty} \frac{\lambda_j}{j} = \alpha.\]

Assume first that \(0 < \alpha < \infty\). Let \(\varepsilon \in (0,\alpha)\). We then obtain for large enough \(n\), from (1.10),

\[j \in \{0, 1, 2, \ldots, n\} \setminus S_{n,\varepsilon} \Rightarrow (\alpha - \varepsilon) j \leq \lambda_j \leq (\alpha + \varepsilon) j.\]

Applying Lemma 2.3 with \(\gamma_j = (\alpha + \varepsilon) j\), \(j \geq 0\), we deduce that

\[
\limsup_{n \to \infty} \frac{1}{n} Z_p(\lambda_0 \cdots \lambda_n)[a,1] \\
\leq \limsup_{n \to \infty} \frac{1}{n} Z_p(0, (\alpha + \varepsilon), 2(\alpha + \varepsilon), \ldots, n(\alpha + \varepsilon))[a,1],
\]

and similarly applying Lemma 2.3 to \((\alpha - \varepsilon) j\), \(j \geq 0\), and \(\lambda_j\), \(j \geq 0\) (with roles swapped),

\[
\liminf_{n \to \infty} \frac{1}{n} Z_p(0, (\alpha - \varepsilon), 2(\alpha - \varepsilon), \ldots, n(\alpha - \varepsilon))[a,1] \\
\leq \liminf_{n \to \infty} \frac{1}{n} Z_p(\lambda_0 \cdots \lambda_n)[a,1].
\]

Applying Lemma 2.4 with \(\gamma_j = (\alpha \pm \varepsilon) j\), \(j \geq 0\), gives

\[
\int_a^1 d\mu_{\alpha \pm \varepsilon}(t) \leq \liminf_{n \to \infty} \frac{1}{n} Z_p(\lambda_0 \cdots \lambda_n)[a,1] \\
\leq \limsup_{n \to \infty} \frac{1}{n} Z_p(\lambda_0 \cdots \lambda_n)[a,1] \leq \int_a^1 d\mu_{\alpha \pm \varepsilon}(t).
\]

Letting \(\varepsilon \to 0+\), and using dominated convergence gives

\[
\lim_{n \to \infty} \frac{1}{n} Z_p(\lambda_0 \cdots \lambda_n)[a,1] = \int_a^1 d\mu_\alpha(t).
\]

This gives the result when \([a,b] = [a,1]\). For general \([a,b]\), we use

\[
\lim_{n \to \infty} \frac{1}{n} Z_p(\lambda_0 \cdots \lambda_n)[a,b] \\
= \lim_{n \to \infty} \frac{1}{n} Z_p(\lambda_0 \cdots \lambda_n)[a,1] - \lim_{n \to \infty} \frac{1}{n} Z_p(\lambda_0 \cdots \lambda_n)(b,1) \\
= \int_a^1 d\mu_\alpha(t) - \int_b^1 d\mu_\alpha(t).
\]
Note that because \(\mu_\alpha \) is absolutely continuous, the number of zeros in a neighborhood of the point \(b \) is negligible in the sense of asymptotic distribution. Finally, if \(\alpha = 0 \), the arguments above give for \(0 < a \leq 1 \),

\[
\limsup_{n \to \infty} \frac{1}{n} Z_p (0, \varepsilon, 2\varepsilon, \ldots, n\varepsilon) [a, 1] = \int_a^1 d\mu_\varepsilon (t).
\]

Letting \(\varepsilon \to 0^+ \) (and using some straightforward estimates) gives

\[
\lim_{n \to \infty} \frac{1}{n} Z_p (0, a, 1) = 0 = \int_0^1 d\mu_0 (t).
\]

Since \(\frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [0, 1] = 1 \), we obtain

\[
\lim_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [0, 1] = 1 = \int_0^1 d\mu_0 (t).
\]

The case \(\alpha = \infty \) is similar. \(\square \)

Proof of Theorem 1.1. This is a special case of Theorem 1.2. \(\square \)

Proof of Theorem 1.3. Let \(0 < a < b < 1 \). Because of (1.13) and interlacing properties, to the left of each zero of \(T_{n,p} \{ \gamma_0 \cdots \gamma_k(n) \} (x) \) in \([0, a]\), there is a zero of \(T_{n,p} \{ \lambda_0 \cdots \lambda_n \} (x) \). Moreover,

\[
Z_p (\lambda_0 \cdots \lambda_n) [0, a] \geq Z_p (\gamma_0 \cdots \gamma_k(n)) [0, a],
\]

so applying Theorem 1.1 to \(\{ \gamma_j \}_{j=0}^\infty \),

\[
\liminf_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [0, a] \geq \liminf_{n \to \infty} \frac{k(n)}{n} \frac{1}{k(n)} Z_p (\gamma_0 \cdots \gamma_k(n)) [0, a]
\]

(2.12)

\[
= \varepsilon \int_0^a d\mu_0 = \varepsilon.
\]

Similarly,

\[
\liminf_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [b, 1] \geq \liminf_{n \to \infty} \frac{\ell(n)}{n} \frac{1}{\ell(n)} Z_p (\rho_0 \cdots \rho_{\ell(n)}) [b, 1]
\]

(2.13)

\[
= (1 - \varepsilon) \int_b^1 d\mu_\infty = 1 - \varepsilon.
\]

Then it follows that

\[
\limsup_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) (a, b)
\]

\[
\leq 1 - \liminf_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [0, a] - \liminf_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) [b, 1] \leq 0.
\]

So for \(0 < a < b < 1 \),

\[
\lim_{n \to \infty} \frac{1}{n} Z_p (\lambda_0 \cdots \lambda_n) (a, b) = 0.
\]
Next, by (2.12) and (2.13),
\[\varepsilon \leq \liminf_{n \to \infty} \frac{1}{n} \mathcal{Z}_p(\lambda_0 \cdots \lambda_n) [0,a] \]
\[\leq \limsup_{n \to \infty} \frac{1}{n} \mathcal{Z}_p(\lambda_0 \cdots \lambda_n) [0,a] \]
\[\leq 1 - \liminf_{n \to \infty} \frac{1}{n} \mathcal{Z}_p(\lambda_0 \cdots \lambda_n)(a,1) \leq \varepsilon, \]
so
\[\lim_{n \to \infty} \frac{1}{n} \mathcal{Z}_p(\lambda_0 \cdots \lambda_n) [0,a] = \varepsilon. \]
Similarly,
\[\lim_{n \to \infty} \frac{1}{n} \mathcal{Z}_p(\lambda_0 \cdots \lambda_n) [b,1] = 1 - \varepsilon. \]
It follows that as \(n \to \infty \),
\[d\nu_n \overset{*}{\to} \varepsilon \delta_0 + (1 - \varepsilon) \delta_1. \]

□

References

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160
E-mail address: lubinsky@math.gatech.edu

Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37240.
E-mail address: Edward.B.Saff@Vanderbilt.edu