STRONG UNIQUE CONTINUATION FOR m-TH POWERS OF A LAPLACIAN OPERATOR WITH SINGULAR COEFFICIENTS

CHING-LUNG LIN

(Communicated by David S. Tartakoff)

Abstract. In this paper we prove strong unique continuation for u satisfying an inequality of the form $|\Delta^m u| \leq f(x, u, Du, \cdots, D^k u)$, where k is up to $[3m/2]$. This result gives an improvement of a work by Colombini and Grammatico (1999) in some sense. The proof of the main theorem is based on Carleman estimates with three-parameter weights $|x|^{2\sigma_1} (\log |x|)^{2\sigma_2} \exp(\beta^2 (\log |x|)^2)$.

1. Introduction

Let Ω be a connected open subset of \mathbb{R}^n ($n \geq 2$) containing 0. In [6], Colombini and Grammatico prove some results of strong unique continuation for u satisfying an inequality of the form

$$|\Delta^m u| \leq f(x, u, Du, \cdots, D^k u)$$

for $k = m$.

In this paper we are interested in u satisfying the following forms:

$$|\Delta^m u| \leq C_0 \sum_{|\alpha| \leq m-1} |x|^{-2m+|\alpha|} |D^\alpha u| + C_0 \sum_{|\alpha| = m} |x|^{-2m+|\alpha|+\epsilon} |D^\alpha u|,$$

where $0 < \epsilon < 1/2$ and the orders of lower order terms are up to $[3m/2]$.

Theorem 1.1. Let $u \in H^{2m}_0(\Omega)$ be a solution of (1.2), and for all $N > 0$ let

$$\int_{|x| \leq R} |u|^2 dx = O(R^N), \quad R \to 0.$$

Then u is identically zero in Ω.

This problem for $m = 1$ has drawn a lot of attention in partial differential equations and mathematical physics. For the development of this problem, the author refers the readers to [15]. In particular, their work was focused on second order equations in which the coefficients of the lower order terms are allowed to be singular (see [2], [3], [11] and [5]). Here we mention two articles which are closely related to our work in this paper.

Hörmander [8] proved that if $u \in H^1_{0, loc}(\Omega)$ satisfies

$$|\Delta u| \leq C_1 |x|^{-2+\epsilon} |u| + C_2 |x|^{-1+\epsilon} |\nabla u|, \quad \epsilon > 0,$$

and u vanishes of infinite order at 0, then u is identically zero in Ω.
Regbaoui [13] extended Hörmander’s result to the sharp case \(\epsilon = 0 \) with small \(C_2 \). His proof was also based on suitable Carleman estimates, but he worked with the strictly convex weights \(\varphi_\beta(x) = \exp\left(\frac{\beta}{2}(\log|x|)^2\right) \) rather than the usual polynomial weights. As for negative results, some counterexamples were given when \(C_2 \) is not small (such as [1] and [16]).

For the case \(m = 2 \), Borgne [4] got some results about strong unique continuation when \(k = 3 \) in [11]. On the other hand, Watanabe [14] established some uniqueness results for \(m = 3 \) with \(k = 5 \). For \(m = 4 \), Ōkaji [10] solved unique continuation when \(k = 7 \). For the higher orders, Protter [12] got the unique continuation for inequalities of the form (1.1) in which \(k \) is up to \([3m/2]\). According to the counterexamples for \(n = 2 \) in [7], Colombini and Grammatico [6] proved the sharp results about the coefficients of the \(m \)-th lower order terms for strong unique continuation with some cases when \(k = m \). In this paper, we consider the cases (1.2).

We will follow Regbaoui’s approach in [13] and organize this paper as follows. In Section 2, we shall study the asymptotic behavior of the function \(u \) near 0 which guarantees the use of the singular weights \(|x|^{2\sigma}(\log|x|)^{2\sigma_2}\varphi_\beta^2\). Some of the key Carleman estimates with the weights \(|x|^{2\sigma}(\log|x|)^{2\sigma_2}\varphi_\beta^2\) will be derived in Section 3. Using these Carleman estimates, we prove Theorem 1.1 in Section 4.

2. Carleman estimates with polynomial weights

Lemma 2.1. There exists a positive constant \(C_m \) such that for any \(u \in C^\infty_0(\mathbb{R}^n \setminus \{0\}) \) and for any \(\tau \in \{k + 1/2, k \in \mathbb{N}\} \), we have the estimate

\[
(2.1) \quad \sum_{|\alpha| \leq 2m} \int |x|^{-2\tau+2|\alpha|} |x|^{-\alpha} |D^\alpha u|^2 dx \leq C_m \int |x|^{-2\tau+4m-\alpha} |\Delta^m u|^2 dx.
\]

Proof. In [13], Regbaoui proved in Lemma 2.1 for any \(u \in C^\infty_0(\mathbb{R}^n \setminus \{0\}) \) and for any \(\tau \in \{k + 1/2, k \in \mathbb{N}\} \) that

\[
(2.2) \quad \sum_{|\alpha| \leq 2} \int |x|^{-2\tau+2|\alpha|} |x|^{-\alpha} |D^\alpha u|^2 dx \leq C \int |x|^{-2\tau+4-n} |\Delta u|^2 dx.
\]

By the repeated use of (2.2), we can get (2.1).

Remark 2.2. The estimate (2.1) in Lemma 2.1 remains valid if we assume \(u \in H^{2m}_loc(\Omega) \) with compact support and satisfying for all \(|\alpha| \leq 2m \) and all \(N > 0 \),

\[
\int_{|x| \leq R} |D^\alpha u|^2 dx = O(R^N) \quad \text{as} \quad R \to 0.
\]

This can be easily obtained by cutting \(u \) off for small \(|x| \) and regularizing.

Motivated by [8] and [13], we get the following theorem. The proof of this theorem is based on Lemma 2.1. From now on, \(c \) stands for a generic constant and its value may vary from line to line.

Theorem 2.3. Let \(u \in H^{2m}_loc(\Omega) \) be a solution to (1.2). If \(|\alpha| \leq 2m \), then

\[
(2.3) \quad \int_{|x| \leq R} |D^\alpha u|^2 dx = O(e^{-BR^{-\epsilon/m}}), \quad R \to 0,
\]

for some positive constant \(B \).
Proof. Following Hörmander’s argument in [9] (Corollary 17.1.4., p. 8), we show that if \(u \in H^2_{\text{loc}}(\Omega) \) is a solution of (1.2), then for all \(|\alpha| \leq 2m \) and for all \(N > 0 \)
\begin{equation}
\int_{|x| \leq R} |D^\alpha u|^2 \, dx = O(R^N), \quad R \to 0.
\end{equation}

In view of Remark 2.2 we can apply (2.1) to the function \(\xi u \), where \(\xi(x) \in C^\infty_0(\mathbb{R}^n) \) such that \(\xi(x) = 1 \) for \(|x| \leq R \) and \(\xi(x) = 0 \) for \(|x| \geq 2R \) (\(R > 0 \) sufficiently small). Here the number \(R \) is not yet fixed and is given by \(R = (\gamma \tau)^{-m/\epsilon} \), where \(\gamma > 0 \) is a large constant which will be chosen later. Using the estimate (2.1) and the equation (1.2), we can derive that
\begin{align}
&\sum_{|\alpha| \leq m-1} \tau^{2m-2|\alpha|} \int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n} |D^\alpha u|^2 \, dx \\
&+ \sum_{|\alpha| = m} \gamma^{2m} \int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n+2\epsilon} |D^\alpha u|^2 \, dx \\
&\quad = \sum_{|\alpha| \leq m-1} \tau^{2m-2|\alpha|} \int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n} |D^\alpha u|^2 \, dx \\
&+ \sum_{|\alpha| = m} R^{-2\tau+2m} \int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n+2\epsilon} |D^\alpha u|^2 \, dx \\
&\quad \leq \sum_{|\alpha| \leq m-1} \tau^{2m-2|\alpha|} \int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n} |D^\alpha u|^2 \, dx \\
&+ \sum_{|\alpha| = m} \tau^{2m-2|\alpha|} \int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n} |D^\alpha u|^2 \, dx \\
&\quad \leq \sum_{|\alpha| \leq 2m} \tau^{2m-2|\alpha|} \int_{|x| \leq R} |x|^{-2\tau+4m-n} |D^\alpha u|^2 \, dx \\
&\quad \leq C_m \int_{|x| \leq R} |x|^{-2\tau+4m-n} |\Delta^m (\chi u)|^2 \, dx \\
&\quad \leq cC_m \int_{|x| \leq R} |x|^{-2\tau+4m-n} |\Delta^m u|^2 \, dx \\
&\quad + cC_m \int_{|x| > R} |x|^{-2\tau+4m-n} |[\chi, \Delta^m] u|^2 \, dx \\
&\quad \leq cC_mC_0 \sum_{|\alpha| \leq m-1} \int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n} |D^\alpha u|^2 \, dx \\
&\quad + cC_mC_0 \sum_{|\alpha| = m} \int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n+2\epsilon} |D^\alpha u|^2 \, dx \\
&\quad + cC_m \int_{|x| > R} |x|^{-2\tau+4m-n} |[\chi, \Delta^m] u|^2 \, dx,
\end{align}
where \([\cdot, \cdot]\) denotes the commutator.

Therefore, carefully checking terms on both sides of (2.4), we can choose \(\gamma \) and let \(\tau \) be large enough such that all terms with \(\int_{|x| \leq R} |x|^{-2\tau+2|\alpha|-n} |D^\alpha u|^2 \, dx \) and
\[\int_{|x| \leq R} |x|^{-2\tau + 2|\alpha| - n + 2\epsilon} |D^\alpha u|^2 \, dx \] on the right side of (2.5) are absorbed by the left-hand side. We now fix such \(\gamma \). By construction of \(\chi \) we have \(|D^\alpha \chi| \leq c_1 R^{-|\alpha|} \), where \(c_1 \) is a positive constant. Consequently, it follows for \(R < 1/2 \) and (2.5) that

\[
\begin{align*}
\tau^{-2m}(R/2)^{-2\tau + 4m - n + 2\epsilon} \sum_{|\alpha| \leq 2m} \int_{|x| \leq R/2} |D^\alpha u|^2 \, dx \\
\leq \sum_{|\alpha| \leq 2m} \tau^{2m-2|\alpha|}(R/2)^{-2\tau + 2|\alpha| - n + 2\epsilon} \int_{|x| \leq R/2} |D^\alpha u|^2 \, dx \\
\leq \sum_{|\alpha| \leq 2m} \tau^{2m-2|\alpha|} \int_{|x| \leq R/2} |x|^{-2\tau + 2|\alpha| - n + 2\epsilon} |D^\alpha u|^2 \, dx \\
\leq \sum_{|\alpha| \leq m-1} \tau^{2m-2|\alpha|} \int_{|x| \leq R} |x|^{-2\tau + 2|\alpha| - n} |D^\alpha u|^2 \, dx \\
+ \sum_{|\alpha| = m} \gamma^{2m} \int_{|x| \leq R} |x|^{-2\tau + 2|\alpha| - n + 2\epsilon} |D^\alpha u|^2 \, dx \\
\leq c \int_{|x| > R} |x|^{-2\tau + 4m - n} |[\chi, \Delta^m] u|^2 \, dx \\
\leq c R^{-4m} R^{-2\tau + 4m - n} \|u\|_{H^m}^2 \\
= c \|u\|_{H^{2m}}^2 R^{-2\tau - n},
\end{align*}
\] (2.6)

where \(\|u\|_{H^{2m}}^2 \) is the \(H^{2m} \) norm of \(u \) in the ball \(B(0, 2R) \).

Recall that for \(R = (\gamma \tau)^{-m/\epsilon} \), we have

\[
\begin{align*}
\sum_{|\alpha| \leq 2m} \int_{|x| \leq R/2} |D^\alpha u|^2 \, dx \\
\leq c R^{-4m-4\epsilon} 2^{-2\gamma^{-1} R^{-\epsilon}/m} \|u\|_{H^m}^2 \\
\leq c e^{-BR^{-\epsilon/m}}.
\end{align*}
\] (2.7)

It should be noted that (2.7) is valid for \(\tau \in \mathbb{N} + \frac{1}{2} \) and \(R = (\gamma \tau)^{-m/\epsilon} \). Therefore, if we choose \(\tau \in \{ j + \frac{1}{2} : j \in \mathbb{N} \} \), then (2.7) only holds for \(R_j = (\gamma(j + \frac{1}{2}))^{-m/\epsilon} \). Nevertheless, we can see that

\[R_{j+1} < R_j < 2R_{j+1} \quad \text{for} \quad j \quad \text{large enough and} \quad R_j \to 0 \quad \text{as} \quad j \to \infty. \]

Thus, we can conclude that

\[
\sum_{|\alpha| \leq 2m} \int_{|x| \leq R} |D^\alpha u|^2 \, dx \leq c e^{-BR^{-\epsilon/m}},
\]

for all sufficiently small \(R > 0 \) with \(B = 2^{-2\epsilon/m} \).

3. Carleman Estimates with More Singular Weights

To prove the following Carleman estimates, we introduce polar coordinates in \(\mathbb{R}^n \setminus \{0\} \) by setting \(x = rw \), with \(r = |x| \), \(\omega = (\omega_1, \cdots, \omega_n) \in S^{n-1} \) when \(x \neq 0 \). Furthermore, setting \(t = \log r \), we can substitute a new coordinate \(t \) for \(r \) such that

\[\frac{\partial}{\partial x_j} = e^{-t}(\omega_j \partial_t + \Omega_j), \]
where Ω_j is a vector field in S^{n-1}. Then the Laplacian becomes
\begin{equation}
(3.1) \quad e^{2t} \Delta = \partial_t^2 + (n-2)\partial_t + \Delta_\omega,
\end{equation}
where $\Delta_\omega = \sum_{j=1}^n \Omega_j^2$ is the Laplace-Beltrami operator in S^{n-1}. The vector field Ω_j has the properties
\begin{equation}
(3.2) \quad \sum_{j=1}^n \omega_j \Omega_j = 0, \quad \sum_{j=1}^n \Omega_j \omega_j = n - 1.
\end{equation}
The adjoint of Ω_j as an operator in $L^2(S^2)$ is
\begin{equation}
(3.3) \quad \Omega_j^* = (n-1)\omega_j - \Omega_j
\end{equation}
and
\begin{equation}
(3.4) \quad \sum_{j=1}^n \Omega_j^* \Omega_j = -\Delta_\omega.
\end{equation}
Hereafter we shall use the following notation:
\begin{equation}
(3.5) \quad D_0 = (1/i)\partial_t; \quad D_k = (1/i)\Omega_k, \quad k = 1, \ldots, n; \quad D^\alpha = D_0^{\alpha_0} \cdots D_n^{\alpha_n}, \quad \alpha = (\alpha_0, \ldots, \alpha_n) \in \mathbb{N}^{n+1}.
\end{equation}
When $r \to 0$, $t \to -\infty$, we will be interested in values of t in a neighborhood of $-\infty$. Motivated by [13], we derive the following Carleman estimate with weights $\varphi_\beta = \varphi_\beta(x) = \exp(\frac{\beta}{2}(\log |x|)^2)$.

Theorem 3.1. Given $\sigma_1 \in \mathbb{Z}$ and $\sigma_2 \in \mathbb{Z}$, there exist a sufficiently large number $\beta_0 > 0$ and a sufficiently small number $r_0 > 0$ depending on n, σ_1 and σ_2 such that for all $u \in U_{r_0}$ with $0 < r_0 < e^{-1}$, $\beta_0 \geq \beta_0$, we have that
\begin{align}
(3.6) \quad C \sum_{|\alpha| \leq 2} \beta^{3-2|\alpha|} & \int \varphi_\beta^2 |x|^{2\sigma_1+2|\alpha|-n}(\log |x|)^{2\sigma_2+2-2|\alpha|} |D^\alpha u|^2 dx \\
& \leq \int \varphi_\beta^2 |x|^{2\sigma_1+4-n}(\log |x|)^{2\sigma_2} |\Delta u|^2 dx,
\end{align}
where $U_{r_0} = \{ u \in C_0^\infty(\mathbb{R}^n \setminus \{0\}) : \text{supp}(u) \subset B_{r_0} \}$ and C is a positive constant.

Proof. By the polar coordinate system, we have
\begin{align}
(3.7) \quad \int \varphi_\beta^2 |x|^{2\sigma_1+4-n}(\log |x|)^{2\sigma_2} |\Delta u|^2 dx \\
& = \int \int e^{\beta t^2} e^{2\sigma_1 t+4t} |\Delta u|^2 dtd\omega \\
& = \int \int e^{\beta t^2/2} e^{\sigma_1 t} e^{2t} |\Delta u|^2 dtd\omega.
\end{align}
If we set $u = e^{-\beta t^2/2} e^{-\sigma_1 t} e^{-\sigma_2} v$ and use (3.1), then
\begin{equation}
(3.8) \quad e^{\beta t^2/2} e^{\sigma_1 t} e^{\sigma_2} \Delta u = (\partial_t - \beta t)^2 v + (n - 2)(\partial_t - \beta t)v + \Delta_\omega v + a\partial_t v + bv,
\end{equation}
where $b = 2\beta\sigma_1 + 2\beta\sigma_2 + \sigma_1^2 + 2\sigma_1\sigma_2 t^{-1} - \sigma_2 t^{-2} + \sigma_2^2 t^{-2} - (n-2)(\sigma_1 + \sigma_2 t^{-1})$ and $a = -2\sigma_1 - 2\sigma_2 t^{-1}$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Similarly, we can get

\[\sum_{|\alpha| \leq 2} \beta^{3-2|\alpha|} \int \int t^{2-2|\alpha|}|D^\alpha v|^2 dt d\omega \leq C \int \int |\Delta_\beta v|^2 dt d\omega, \tag{3.8} \]

where \(\Delta_\beta = (\partial_t - \beta \partial_t)^2 + (n-2)(\partial_t - \beta \partial_t) + \Delta_\omega v \) and \(C \) is a positive constant.

Note that

\[\Delta_\beta = \partial_t^2 v + (n-2)\partial_t v - 2\beta t \partial_t v - (n-2)\beta tv - \beta v + \beta^2 t^2 v + \Delta_\omega v. \]

Denote

\[\Delta_\beta^* = \partial_t^2 v - (n-2)\partial_t v + 2\beta t \partial_t v - (n-2)\beta tv - \beta v + \beta^2 t^2 v + \Delta_\omega v. \]

Using integration by parts, we get

\[I := \int \int |\Delta_\beta v|^2 dt d\omega - \int \int |\Delta_\beta^* v|^2 dt d\omega \]

\[= \int \int (12\beta^2 t^2 + \beta^2 O(t)) |v|^2 dt d\omega + 4\beta \int \int |\partial_t v|^2 dt d\omega \]

\[- 4\beta \int \sum_j |\Omega_j v|^2 dt d\omega. \tag{3.9} \]

Similarly, we can get

\[J := \int \int t^{-2} |\Delta_\beta v|^2 dt d\omega + \int \int t^{-2} |\Delta_\beta^* v|^2 dt d\omega \]

\[= \int \int (2\beta^4 t^2 + \beta^3 O(t)) |v|^2 dt d\omega + \int (8\beta^2 + \beta O(t^{-1})) |\partial_t v|^2 dt d\omega \]

\[+ 2 \int \int t^{-2} |\partial_t v|^2 dt d\omega - \int \sum_j (4\beta^2 + \beta O(t^{-1})) |\Omega_j v|^2 dt d\omega \]

\[+ 2 \int \int t^{-2} |\Delta_\omega v|^2 dt d\omega + 4 \int \int t^{-2} \sum_j |\partial_t \Omega_j v|^2 dt d\omega. \tag{3.10} \]

If \(v \in C_{0}^\infty(B(0,e^{T_0})) \) and \(\beta >> |T_0| \) is large enough, then it follows from (3.9) and (3.10) that

\[\beta I + J \geq 13\beta^4 \int \int t^2 |v|^2 dt d\omega + 2 \int \int t^{-2} |\Delta_\omega v|^2 dt d\omega \]

\[- 9\beta^2 \int \sum_j |\Omega_j v|^2 dt d\omega + 11\beta^2 \int |\partial_t v|^2 dt d\omega \]

\[+ 2 \int \int t^{-2} |\partial_t v|^2 dt d\omega + 4 \int \int t^{-2} \sum_j |\partial_t \Omega_j v|^2 dt d\omega \geq K + \frac{13}{39} \beta^4 \int \int t^2 |v|^2 dt d\omega + \frac{1}{20} \int \int t^{-2} |\Delta_\omega v|^2 dt d\omega \]

\[+ \beta^2 \int \sum_j |\Omega_j v|^2 dt d\omega + 11\beta^2 \int |\partial_t v|^2 dt d\omega \]

\[+ 2 \int \int t^{-2} |\partial_t v|^2 dt d\omega + 4 \int \int t^{-2} \sum_j |\partial_t \Omega_j v|^2 dt d\omega, \tag{3.11} \]
where
\[K = \frac{500}{39} \beta^4 \int t^2 |v|^2 dt \omega - 10 \beta^2 \int \sum_j |\Omega_j v|^2 dt \omega + \frac{39}{20} \int t^{-2} |\Delta_\omega v|^2 dt \omega. \]

Now we shall get a lower bound of \(K \). Then, by (3.3), we have
\[
(3.12) \quad -\beta^2 \int \sum_j |\Omega_j v|^2 dt \omega = \beta^2 \int v \Delta_\omega v dt \omega.
\]

Since \(10 |ab| \leq \frac{500}{39} \beta^4 |v|^2 + \frac{39}{20} \beta^2 |\Delta_\omega v|^2 \), it follows that
\[
(3.13) \quad 10 |\beta^2 \Delta_\omega v| \leq \frac{500}{39} \beta^4 |v|^2 + \frac{39}{20} \beta^2 |\Delta_\omega v|^2.
\]

Combining (3.12) and (3.13), we get a lower bound of \(K \):
\[
(3.14) \quad K = \frac{500}{39} \beta^4 \int t^2 |v|^2 dt \omega - 10 \beta^2 \int \sum_j |\Omega_j v|^2 dt \omega + \frac{39}{20} \int t^{-2} |\Delta_\omega v|^2 dt \omega \geq 0.
\]

In addition, the ellipticity of \(\Delta_\omega \) implies that there exists a new positive constant \(C \) such that
\[
(3.15) \quad \sum_{|\alpha|=2} \int t^{-2} |\Omega^\alpha v|^2 dt \omega \leq C \int t^{-2} |\Delta_\omega v|^2 dt \omega.
\]

Thus, it follows from (3.11), (3.14) and (3.15) that
\[
C(\beta I + J) \geq \beta^4 \int t^2 |v|^2 dt \omega + \int t^{-2} |\Delta_\omega v|^2 dt \omega
+ \beta^2 \int \sum_j |\Omega_j v|^2 dt \omega + \beta^2 \int |\partial v|^2 dt \omega
+ \int t^{-2} |\partial^2 v|^2 dt \omega + \int t^{-2} \sum_j |\partial \Omega_j v|^2 dt \omega.
\]
Together with
\[
\beta I + J \leq (\beta + 1) \int |\Delta_\omega v|^2 dt \omega,
\]
(3.8) holds. So we have the result.

Corollary 3.1. Given \(\sigma_1 \in \mathbb{Z} \) and \(\sigma_2 \in \mathbb{Z} \), there exist a sufficiently large number \(\beta_0 > 0 \) and a sufficiently small number \(r_0 > 0 \) depending on \(n, m, \sigma_1 \) and \(\sigma_2 \) such that for all \(u \in U_{r_0} \) with \(0 < r_0 < e^{-1} \), \(\beta \geq \beta_0 \), we have that
\[
C \sum_{|\alpha| \leq 2m} \beta^{3m-2|\alpha|} \int \varphi_\beta^2 |x|^{2\sigma_1+2|\alpha|+n} (\log |x|)^{2\sigma_2+2m-2|\alpha|} |D^n u|^2 dx
\leq \int \varphi_\beta^2 |x|^{2\sigma_1+4m-n} (\log |x|)^{2\sigma_2} |\Delta^m u|^2 dx,
\]
where \(C \) is a positive constant.
There exist a sufficiently large number $\beta_0 > 0$ and a sufficiently small number $r_0 > 0$ depending on n and m such that for all $u \in U_{r_0}$ with $0 < r_0 < e^{-1}$, $\beta \geq \beta_0$, we have that

$$C \sum_{|\alpha| \leq 2m} \beta^{3m-2|\alpha|} \int \varphi_\beta^2 |x|^{2|\alpha|-n} (\log |x|)^{2m-2|\alpha|} |D^\alpha u|^2 dx$$

(3.16)

$$\leq \int \varphi_\beta^2 |x|^{4m-n} |\Delta^m u|^2 dx,$$

where C is a positive constant.

Remark 3.2. The estimate (3.16) in Corollary 3.2 remains valid if we assume $u \in H^{2m}_{210}(\Omega)$ with compact support and satisfies for all $|\alpha| \leq 2m$, $\int |x| \leq R |D^\alpha u|^2 dx = O(e^{-BR^{-r/m}})$ as $R \to 0$, $B > 0$.

4. Proof of Theorem 1.1

Let $u \in H^{2m}_{210}(\Omega)$ be a solution of (1.2). By Lemma 2.1 and Theorem 2.3, u is in $H^{2m}_{100}(\Omega)$ and satisfies (2.3). Thus by Remark 3.2 we can apply (3.16) with the function ξu, where $\xi(x) \in C_0^\infty(\mathbb{R}^n)$ such that $\xi(x) = 1$ for $|x| \leq R$ and $\xi(x) = 0$ for $|x| \geq 2R$ ($R > 0$ small enough). Then

$$\sum_{|\alpha| \leq (2m/3)} \beta^{3m-2|\alpha|} \int |x| < R \varphi_\beta^2 |x|^{2|\alpha|-n} (\log |x|)^{2m-2|\alpha|} |D^\alpha u|^2 dx$$

$$\leq \sum_{|\alpha| \leq 2m} \beta^{3m-2|\alpha|} \int |x| < R \varphi_\beta^2 |x|^{2|\alpha|-n} (\log |x|)^{2m-2|\alpha|} |D^\alpha u|^2 dx$$

$$\leq \sum_{|\alpha| \leq 2m} \beta^{3m-2|\alpha|} \int \varphi_\beta^2 |x|^{2|\alpha|-n} (\log |x|)^{2m-2|\alpha|} |D^\alpha (\xi u)|^2 dx$$

$$\leq c \int \varphi_\beta^2 |x|^{4m-n} |\Delta^m (\xi u)|^2 dx$$

(4.1)

$$\leq c \int |x| \leq R \varphi_\beta^2 |x|^{4m-n} |\Delta^m u|^2 dx + c \int |x| > R \varphi_\beta^2 |x|^{4m-n} |\xi, \Delta^m u|^2 dx$$

$$\leq c \sum_{|\alpha| \leq m-1} \int |x| \leq R \varphi_\beta^2 |x|^{2|\alpha|-n} |D^\alpha u|^2 dx$$

$$+ c \sum_{|\alpha| = m} \int |x| \leq R \varphi_\beta^2 |x|^{2|\alpha|-n+2} |D^\alpha u|^2 dx$$

$$+ c \int |x| > R \varphi_\beta^2 |x|^{4m-n} |\xi, \Delta^m u|^2 dx,$$

because $\lim_{|x| = R} r^2 (\log r)^{-2m} = 0$ which implies $c|x|^{2\epsilon} \leq (\log |x|)^{2m}$ as $R \leq R_0$ for some small $R_0 > 0$. Let $\beta > \beta_0$ (β_0 large enough); the first two terms on the right-hand side will be swallowed by the left-hand side. Recall that $\varphi_\beta = \varphi_\beta(x) = \ldots$
\[\exp\left(\frac{\beta}{2} (\log |x|)^2 \right) . \] Therefore, we obtain that
\[
\beta^{3m} \exp\left(\beta (\log R_0)^2 \right) \int_{|x| < R_0} |x|^{-n} (\log |x|)^{2m} |u|^2 dx
\leq \sum_{|\alpha| \leq \frac{1}{2}} \beta^{3m-2|\alpha|} \int_{|x| < R_0} \varphi^2 |x|^{-|\alpha|} (\log |x|)^{2m-2|\alpha|} D^\alpha |u|^2 dx
\leq \sum_{|\alpha| \leq \frac{1}{2}} \beta^{3m-2|\alpha|} \int_{|x| < R_0} \varphi^2 |x|^{-|\alpha|} (\log |x|)^{2m-2|\alpha|} D^\alpha |u|^2 dx
\leq c \int_{|x| > R_0} \varphi^2 |x|^{4m-n} [\xi, \Delta^m] |u|^2 dx
\leq c \exp(\beta (\log R_0)^2) \int_{|x| > R_0} |x|^{4m-n} [\xi, \Delta^m] |u|^2 dx.
\] (4.2)

Divide \(\exp(\beta (\log R_0)^2) \) into both sides of (4.2) and then let \(\beta \to \infty \); this implies that \(u = 0 \) in \(B(0, R_0) \). By standard arguments, we can get \(u = 0 \) in \(\Omega \). This completes the proof.

\textbf{Acknowledgement}

I would like to thank Professor Jenn-Nan Wang for his many constructive suggestions and comments.

\textbf{References}

Department of Mathematics, National Chung-Cheng University, Chia-Yi 62117, Taiwan
E-mail address: cllin@math.ccu.edu.tw