Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Local Cauchy-Riemann embeddability of real hyperboloids into spheres


Author: Jong-Won Oh
Journal: Proc. Amer. Math. Soc. 135 (2007), 397-403
MSC (2000): Primary 32V30; Secondary 32V20
DOI: https://doi.org/10.1090/S0002-9939-06-08741-7
Published electronically: August 2, 2006
MathSciNet review: 2255286
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study the local Cauchy-Riemann embeddability of strictly pseudoconvex real hyperboloids $ M^{2n+1}$ into spheres. By solving a CR analogue of the Gauss equation, we prove that $ M^{2n+1}$ is CR-embeddable into spheres with a CR co-dimension $ <$ $ n-1$ if and only if it is spherical.


References [Enhancements On Off] (What's this?)

  • 1. Chern, S. S. and Moser, J. K., Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219-271. MR 0425155 (54:13112)
  • 2. Ebenfelt, P., Huang, X. and Zaitsev, D., Rigidity of CR-immersions into spheres, Comm. Anal. Geom. 12 (2004), no. 3, 631-670. MR 2128606 (2006c:53037)
  • 3. Ebenfelt, P., Huang, X. and Zaitsev, D., The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics, Amer. J. Math. 127 (2005), no. 1, 169-191. MR 2115664 (2006c:32047)
  • 4. Faran, J., The nonembeddability of real hypersurfaces in spheres, Proc. Amer. Math. Soc. 103 (1988), 902-904. MR 0947678 (89i:32037)
  • 5. Forstneric, F., Embedding strictly pseudoconvex domains into balls, Trans. Amer. Math. Soc. 295 (1986), 347-368. MR 0831203 (87k:32052)
  • 6. Huang, X., On a linearity problem for proper holomorphic maps between balls in complex spaces of different dimensions, J. Differential Geom. 51 (1999), 13-33. MR 1703603 (2000e:32020)
  • 7. Huang, X. and Ji, S., Mapping $ \mathbf{B}^{n}$ into $ \mathbf{B}^{2n-1}$, Invent. Math. 145 (2001), 219-250. MR 1872546 (2002i:32013)
  • 8. Lempert, L., Imbedding Cauchy-Riemann manifolds into a sphere, International J. of Math. 1 (1990), 91-108. MR 1044662 (91c:32013)
  • 9. Løw, E., Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls, Math. Z. 190 (1985), 401-410. MR 0806898 (87b:32047)
  • 10. Stensønes, B., Proper maps which are Lipschitz $ \alpha$ up to the boundary, J. Geom. Anal. 6 (1996), no. 2, 317-339. MR 1469126 (98g:32040)
  • 11. Webster, S. M., Pseudohermitian structures on a real hypersurface, J. Differential Geom. 13 (1978), 25-41. MR 0520599 (80e:32015)
  • 12. Webster, S. M., The rigidity of C-R hypersurfaces in a sphere, Indiana Univ. Math. J. 28 (1979), 405-416. MR 0529673 (80d:32022)
  • 13. Webster, S. M., Segre polar correspondence and double valued reflection for general ellipsoids, Analysis and geometry in several complex variables (Katata, 1997), Trends Math., Birkhäuser, Boston, MA (1999), 273-288. MR 1699856 (2000k:32033)
  • 14. Webster, S. M., A remark on the Chern-Moser tensor, Houston J. Math. 28 (2002), no. 2, 433-435. MR 1898199 (2003d:32047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 32V30, 32V20

Retrieve articles in all journals with MSC (2000): 32V30, 32V20


Additional Information

Jong-Won Oh
Affiliation: Department of Mathematics, Yonsei University, Seoul 120-749, Korea
Address at time of publication: Department of Mathematics, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-742, Korea
Email: jwoh@math.snu.ac.kr

DOI: https://doi.org/10.1090/S0002-9939-06-08741-7
Keywords: CR embeddability, real hyperboloid, sphere, the Gauss equation.
Received by editor(s): August 25, 2005
Published electronically: August 2, 2006
Additional Notes: The author was supported by BK21-Yonsei University.
Communicated by: Mei-Chi Shaw
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society