Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Rigidity of surfaces whose geodesic flows preserve smooth foliations of codimension 1


Authors: José Barbosa Gomes and Rafael O. Ruggiero
Journal: Proc. Amer. Math. Soc. 135 (2007), 507-515
MSC (2000): Primary 53C24; Secondary 53C22, 57R30, 37D40
DOI: https://doi.org/10.1090/S0002-9939-06-08755-7
Published electronically: August 28, 2006
MathSciNet review: 2255297
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ S$ be a closed orientable surface. Assume that there exists a codimension one foliation $ \mathcal F$ of class $ C^3$ in the unit tangent bundle of $ S$, whose leaves are invariant under the geodesic flow of $ S$. Then, the curvature of $ S$ is a nonpositive constant.


References [Enhancements On Off] (What's this?)

  • 1. Ballmann, W., Gromov, M., Schröeder, V., Manifolds of Non-positive curvature, Boston, Birkhäuser, 1985. MR 0823981 (87h:53050)
  • 2. Benoist, Y., Foulon, F., Labourie, F., Flots d'Anosov à distribution stable et instable différentiable, J. Amer. Math. Soc. 1 (1992), 33-74. MR 1124979 (93b:58112)
  • 3. Burago, D., Ivanov, S., Riemannian tori without conjugate points are flat, Geom. Funct. Anal. 4 (1994), n. 3, 259-269. MR 1274115 (95h:53049)
  • 4. Camacho, C., Lins, A., Teoria Geométrica das Folheações, CNPq, Brasília, 1979. MR 0642831 (84m:57017)
  • 5. Candel, A., Conlon, L., Foliations I, American Mathematical Society, Providence, 2000. MR 1732868 (2002f:57058)
  • 6. Donnay, V., Pugh, C., Anosov geodesic flows for embedded surfaces, Astérisque 287 (2003), 61-70. Geometric methods in dynamics (II), Volume in honor of Jacob Palis. De Melo, Viana, Yoccoz, Editors. MR 2040000 (2005b:37051)
  • 7. Eberlein, P., Geodesic flow in certain manifolds without conjugate points, Transactions of the American Mathematical Society 167 (1972), 151-170. MR 0295387 (45:4453)
  • 8. Eberlein, P., When is a geodesic flow of Anosov type? I, J. Differential Geometry 8 (1973), 437-463. MR 0380891 (52:1788)
  • 9. Eberlein, P., Horocycle flows on certain surfaces without conjugate points, Transactions of the American Mathematical Society 233 (1977), 1-36. MR 0516501 (58:24380)
  • 10. Ehresmann, C., Les connexions infinitésimales dans un espace fibré différentiable, Colloque de Topologie, CBRM, Bruxelles, 1950, pp. 29-55. MR 0042768 (13:159e)
  • 11. Feres, R., Katok, A., Invariant tensor fields of dynamical systems with pinched Lyapunov exponents and rigidity of geodesic flows, Ergodic Theory and Dynamical Systems 9 (1989), 427-432. MR 1016661 (90k:58167)
  • 12. Feres, A., Katok, A., Anosov flows with smooth foliations and rigidity of geodesic flows in three-dimensional manifolds of negative curvature, Ergodic Theory and Dynamical Systems 10 (1990), 657-670. MR 1091420 (92e:58150)
  • 13. Ghys, E., Flots d'Anosov sur les 3-variétés fibrées en cercles, Ergodic Theory and Dynamical Systems 4 (1984), 67-80. MR 0758894 (86b:58098)
  • 14. Ghys, E., Flots d'Anosov dont les feuilletages stables sont différentiables, Ann. Scient. École Norm. Sup. 20 (1987), 251-270. MR 0911758 (89h:58153)
  • 15. Ghys, E., Déformations de flots d'Anosov et de groupes Fuchsiens, Ann. Inst. Fourier 42 (1992), 209-247. MR 1162561 (93j:58111)
  • 16. Ghys, E., Rigidité Différentiable des Groupes Fuchsiens, Publications Mathématiques I.H.E.S. 78 (1993), 163-185. MR 1259430 (95d:57009)
  • 17. Godbillon, C., Vey, J., Un invariant des feuilletages de codimension 1, C. R. Acad. Sci. Paris 273 (1971), 92-95. MR 0283816 (44:1046)
  • 18. Green, L. W., Surfaces without conjugate points, Transactions of the American Mathematical Society 76 (1954), 529-546. MR 0063097 (16:70d)
  • 19. Gromov, M., Hyperbolic Groups, In: S. M. Gersten (Ed.), Essays in Group Theory, MSRI Publ., 8, Springer-Verlag, New York, 1987, pp. 75-264. MR 0919826 (88e:20004)
  • 20. Gulliver, R., On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc. 210 (1975), 185-201. MR 0383294 (52:4175)
  • 21. Hamenstädt, U., Invariant two-forms for geodesic flows, Math. Ann. 301 (1995), 677-698. MR 1326763 (96a:58145)
  • 22. Hedlund, G. A., Fuchsian groups and transitive horocycles, Duke Mathematical Journal II (1936), 530-542. MR 1545946
  • 23. Hopf, E., Closed surfaces without conjugate points, Proceedings of the National Academy of Sciences of the United States of America 34 (1948), 47-51. MR 0023591 (9:378d)
  • 24. Hopf, E., Statistik der geod$ \ddot{a}$tischen Linien in Mannigfaltigkeiten negativer Kr$ \ddot{u}$mmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91, (1939). 261-304. MR 0001464 (1:243a)
  • 25. Hurder, S., Katok, A., Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Publications Mathématiques I.H.E.S. 72 (1990), 5-61. MR 1087392 (92b:58179)
  • 26. Kanai, M., Geodesic flows of negatively curved manifolds with smooth stable and unstable foliations, Ergodic Theory and Dynamical Systems 8 (1988), 215-239. MR 0951270 (89k:58230)
  • 27. Klingenberg, W., Riemannian Geometry, Walter de Gruyter & Co., Berlin, 1982. MR 0666697 (84j:53001)
  • 28. Mañé, R., On a theorem of Klingenberg, In: M. I. Camacho, M. J. Pacífico, F. Takens (Ed.), Dynamical Systems and Bifurcation Theory, Longman Scientific & Technical, New York, 1987, pp. 319-345. MR 0907897 (88k:58129)
  • 29. Mitsumatsu, Y., A relation between the topological invariance of the Godbillon-Vey invariant and the differentiability of Anosov foliations, Advanced Studies in Pure Mathematics 5 (1985), 159-167. MR 0877331 (88a:57050)
  • 30. Morse, H. M., A fundamental class of geodesics on any closed surface of genus greater than one, Trans. American Math. Society 26 (1924), 25-60. MR 1501263
  • 31. Paternain, G. P., Geodesic Flows, Birkhäuser, Boston, 1999. MR 1712465 (2000h:53108)
  • 32. Raby, G., Invariance des classes de Godbillon-Vey par $ C^1$-diffeomorphismes, Ann. Inst. Fourier 38(1) (1998), 205-213. MR 0949006 (89j:57023)
  • 33. Singer, I. M, Thorpe, J. A., Lecture Notes on Elementary Topology and Geometry, Springer-Verlag, New York, 1967. MR 0213982 (35:4834)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 53C24, 53C22, 57R30, 37D40

Retrieve articles in all journals with MSC (2000): 53C24, 53C22, 57R30, 37D40


Additional Information

José Barbosa Gomes
Affiliation: Departamento de Matemática, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil, 36036-330
Email: jbarbosa@ice.ufjf.br

Rafael O. Ruggiero
Affiliation: Departamento de Matemática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, 22453-900
Email: rorr@mat.puc-rio.br

DOI: https://doi.org/10.1090/S0002-9939-06-08755-7
Keywords: Godbillon-Vey number, geodesic flow, rigidity, Anosov flow
Received by editor(s): September 14, 2005
Published electronically: August 28, 2006
Additional Notes: The first author was supported in part by CAPES of the Brazilian Government.
The second author was supported in part by CNPq of the Brazilian Government
Communicated by: Michael Handel
Article copyright: © Copyright 2006 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society